Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Революціонізуйте наради: Підвищуйте продуктивність за допомогою автоматизованих резюме

Віртуальні бізнес-зустрічі залишаються, і очікується, що до 2024 року 41% з них будуть гібридними або віртуальними. Автоматизуйте підбиття підсумків зустрічей за допомогою штучного інтелекту, щоб ефективно зосередитися та підвищити продуктивність.

Освоєння MLOps: версіонування даних і моделей

Контроль версій має важливе значення як в інженерії програмного забезпечення, так і в машинному навчанні, де версії даних і моделей відіграють вирішальну роль. Це дає такі переваги, як відстежуваність, відтворюваність, відкат, налагодження та співпраця.

Викриття LockBitSupp: Ідентифіковано натхненника вірусу-здирника

За арешт «LockBitSupp», який виявився Дмитром Юрійовичем Хорошевим, лідером процвітаючого угруповання здирників LockBit, призначено винагороду в розмірі 10 мільйонів доларів США. Прокуратура встановила, що Хорошев вимагав 500 мільйонів доларів у 2 500 жертв, завдавши мільярдних збитків по всьому світу.

Освоєння MLOps: основи відстеження експерименту

Розробка моделей машинного навчання схожа на випічку - невеликі зміни можуть мати великий вплив. Відстеження експерименту має вирішальне значення для відстеження входів і виходів, щоб знайти найефективнішу конфігурацію. Організація та ведення журналу експериментів з машинного навчання допомагає не втратити з поля зору те, що працює, а що ні.

Захист мобільних даних за допомогою федеративного навчання

Мета досліджує федеративне навчання з диференційованою конфіденційністю для підвищення конфіденційності користувачів шляхом навчання ML-моделей на мобільних пристроях, додаючи шум для запобігання запам'ятовуванню даних. Виклики включають балансування міток і повільне навчання, але нова системна архітектура Meta спрямована на вирішення цих проблем, дозволяючи масштабувати і ефективно навчати мо...

Демістифікація MLOps: ключ до успіху машинного навчання

Компанії інвестують у ВК для створення цінності, але стикаються з проблемами у підтримці ефективності. MLOps застосовує принципи DevOps до систем машинного навчання для співпраці, автоматизації та постійного вдосконалення.

Революційний пошук відео за допомогою Veritone та Amazon AI

Veritone, каліфорнійська компанія зі штучного інтелекту, пропонує потужні ШІ-рішення для обробки медіа тощо. Вони розширюють можливості пошуку медіа за допомогою нових методів штучного інтелекту для покращення користувацького досвіду.

Опановуємо техніки навчання: Комплексний посібник

Такі терміни, як одномоментне навчання, навчання з кількох спроб, навчання з нуля і точне налаштування в ШІ, мають різні визначення. Методи включають сіамські мережі, модельне агностичне метанавчання та використання допоміжних даних для класифікації.

Революція штучного інтелекту: Загрози та можливості в новинній індустрії

OpenAI підкреслює важливість якісних даних для моделей ШІ, заявляючи, що доступ до захищених авторським правом матеріалів має вирішальне значення для навчання. Деякі видавці продають дані, тоді як інші обмежують доступ, підкреслюючи цінність величезних наборів даних видавців новин.

ШІ революціонізує відбір жіночих збірних Англії

Головний тренер збірної Джон Льюїс дякує штучному інтелекту за допомогу в розіграші Кубка світу з футболу, використовуючи технологію для прийняття рішень щодо складу та командного балансу. Лондонська компанія PSi допомагає у відборі до жіночої збірної Англії, покращуючи ігрові поєдинки.

Інструмент штучного інтелекту спрямований на зменшення обмежень для учасників НДІС

Нова програма зі штучного інтелекту допомагає створювати кращі плани підтримки людей з інвалідністю, щоб зменшити обмеження та ізоляцію людей з інвалідністю. Програма «Просування практики підтримки позитивної поведінки» має на меті допомогти особам, які здійснюють догляд та підтримку, з повагою та конструктивно реагувати на складну поведінку.

Оптимізуйте свої підказки за допомогою DSPy

Стенфордський НЛП впроваджує DSPy для розробки підказок, переходячи від ручного написання підказок до модульного програмування. Новий підхід має на меті оптимізувати підказки для LLM, підвищуючи надійність та ефективність.

Міжзоряні чат-боти зі штучним інтелектом: Спілкування з інопланетними цивілізаціями

Відомий дослідник ШІ Андрій Карпатій пропонує модифікувати ChatGPT для космічного зв'язку, що викликає інтерес у цій галузі. Впливовий профіль Карпаті та інноваційний проект "llm.c" демонструють спрощені процеси навчання на ступінь магістра права.

Прогнозування трендів: Регресія часових рядів на C#

Регресія часових рядів є складним завданням, для вирішення якого існують різні методи. Нещодавні дослідження вивчають використання нейронних мереж, таких як трансформатори, для підвищення точності прогнозування.