Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Еволюція письма: Перевірка орфографії за допомогою штучного інтелекту

Інструменти штучного інтелекту стали частиною нашого повсякденного життя з моменту появи програми перевірки орфографії в 1979 році. Сьогоднішня розмова про штучний інтелект - це лише наступний крок на довгому шляху, на якому вже є інструменти лівої півкулі, такі як НЛП і машинне навчання, і інструменти правої півкулі, такі як генеративний ШІ.

Використання слабких місць ШІ: Ворожий інтелект розв'язав руки

Дослідники Массачусетського технологічного інституту розробляють «штучний супротивний інтелект», щоб імітувати хакерів і посилити захист кібербезпеки від програм-вимагачів і крадіжок даних. Уна-Мей О'Рейлі з MIT CSAIL пояснює, як ШІ відтворює тактику зловмисників для захисту від кіберзагроз.

Помилки штучного інтелекту в AdTech

Проблеми переходу до глибокого навчання в AdTech призвели до інцидентів, але в кінцевому підсумку покращили продуктивність платформи ML. Стратегії управління інцидентами мають вирішальне значення для надійних конвеєрів моделей у виробництві.

Векторна революція: Переосмислення успіху в бізнесі

Вектори - це прихована сила штучного інтелекту, яка пропонує динамічний погляд на взаємозв'язки та закономірності в даних. Розуміння векторного мислення має вирішальне значення для бізнес-лідерів, щоб приймати обґрунтовані рішення і залишатися попереду в цифрову епоху.

Підвищення продуктивності ШІ в умовах невизначеності

Дослідники з Массачусетського технологічного інституту та інші виявили ефект навчання в приміщенні: Агенти штучного інтелекту, навчені в менш шумному середовищі, перевершили тих, хто навчався в шумному, кинувши виклик загальноприйнятій думці. Дослідження, представлене на конференції AAAI, пропонує нові підходи до навчання ШІ-агентів для підвищення їхньої ефективності.

Вивільнення мовних моделей бачення

ВЛМ поєднують текстові та візуальні дані для таких завдань, як перевірка якості та субтитрування зображень, заповнюючи прогалину між текстовими та візуальними даними. Методи підказок VLM включають підказки з нульовим чи кількома кадрами, а також підказки, керовані виявленням об'єктів, що покращують розуміння моделями завдань.

Додаток DeepSeek зіткнувся з негативною реакцією в Італії через проблеми з даними

Італійські та ірландські регулятори вимагають відповідей від DeepSeek через проблеми з використанням даних. Китайський чат-бот зникає з магазинів додатків в Італії на тлі побоювань уряду щодо збору даних.

Революційна трансформація корпоративних операцій з Amazon Bedrock AI

Генеративний ШІ трансформує організації за допомогою інноваційних додатків для покращення клієнтського досвіду. Такі операційні моделі, як децентралізована, централізована та федеративна, сприяють впровадженню та управлінню технологіями генеративного ШІ.

Повстання роботів-плагіаторів

Шанувальники «Першого Пса» тепер можуть легко бути в курсі нових мультфільмів, підписавшись на сповіщення електронною поштою. Крім того, вони можуть придбати сувенірну продукцію та принти в магазині First Dog.

Революціонізуйте свій додаток за допомогою Amazon Aurora та Kendra

Генеративний ШІ та великі мовні моделі трансформують організації, покращуючи клієнтський досвід завдяки перетворенню даних. Amazon Aurora дозволяє легко індексувати дані для Amazon Kendra, щоб впровадити Retrieval Augmented Generation (RAG) для отримання точних відповідей.

Жахливі темпи: екс-дослідник OpenAI про розробку штучного інтелекту

Колишній дослідник безпеки OpenAI Стівен Адлер застерігає від швидкого розвитку ШІ, називаючи його «дуже ризикованою грою» для людства. Він висловлює занепокоєння тим, що штучний загальний інтелект (ШЗІ) може перевершити людські здібності.

Освоєння швидкості штучного інтелекту: Посібник з виведення висновків на основі Amazon Bedrock

Компанії, що використовують великі мовні моделі (LLM), стикаються з проблемою швидкого реагування. Amazon Bedrock представляє оптимізований за часом висновок для моделей Claude від Anthropic та Llama від Meta на re:Invent 2024, покращуючи взаємодію з користувачами в робочих навантаженнях, чутливих до часу.

Покращення оцінки моделі LLM за допомогою SageMaker MLflow та FMEval

Оцінка великих мовних моделей (LLM) має вирішальне значення для розуміння можливостей і зменшення ризиків. FMEval та Amazon SageMaker пропонують інструменти для програмного оцінювання БММ на предмет точності, токсичності, справедливості та ефективності.

Зламування коду DeepSeek

Китайський стартап кидає виклик домінуванню США у сфері штучного інтелекту. Ініціатива Stargate та розширення Meta на $65 млрд сколихнули технологічну індустрію.