DDPG покращує медичну робототехніку, керовану штучним інтелектом, вирішуючи проблему безперервного управління діями. Фреймворк Actor-Critic в DDPG поєднує в собі DPG і DQN для підвищення стабільності та продуктивності в середовищах з безперервними діями.
Data scientists, які переходять на керівні посади, потребують бізнес-навичок, таких як вільне володіння фінансами, щоб керувати ефективними ініціативами в галузі даних. Розуміння фінансових умов може допомогти адаптувати інсайти, підвищити успіх компанії і навіть домовитися про кращу оплату праці. Знання цифр відкриває двері до таких можливостей, як податкові знижки на інвестиції в R&D.
EBSCOlearning співпрацює з AWS GenAIIC, щоб трансформувати процес оцінювання навчання за допомогою технології генеративного ШІ. Проблеми генерації контролю якості вирішуються за допомогою рішення на основі штучного інтелекту для масштабованого високоякісного оцінювання.
Генератор відео-тексту Sora від OpenAI, який тепер доступний для всіх у США, створює відеокліпи зі штучним інтелектом на основі письмових підказок. Завдяки інноваційній технології Sora користувачі можуть бачити, як їхні підказки оживають, як сім'я шерстистих мамонтів у відкритій пустелі.
Пол Маккартні попереджає, що штучний інтелект може загрожувати джерелам доходу для авторів, і закликає ухвалити закони проти масових крадіжок авторських прав компаніями, що займаються штучним інтелектом. Колишній «бітл» висловлює занепокоєння тим, що молоді композитори та письменники не можуть захистити свою інтелектуальну власність від алгоритмічних моделей.
Китай розслідує антимонопольні порушення компанії Nvidia на тлі обмежень у секторі виробництва мікросхем у США, які впливають на ШІ та ігрові чіпи. Державна адміністрація з регулювання ринку (SAMR) проводить розслідування, не уточнюючи, в чому саме полягають порушення.
Великі мовні моделі, такі як ChatGPT, швидко розвиваються, але можуть демонструвати політичну упередженість. Дослідження Массачусетського технологічного інституту ставить під сумнів, чи можуть моделі винагороди бути одночасно правдивими та неупередженими.
Дослідники з Массачусетського технологічного інституту розробили систему, що використовує великі мовні моделі для перетворення складних пояснень ШІ на просту мову, покращуючи розуміння користувача. Система оцінює якість розповіді, що дозволяє користувачам довіряти прогнозам машинного навчання і налаштовувати пояснення відповідно до конкретних потреб.
Моделі класифікації надають не лише відповіді, але й рівні впевненості через оцінки ймовірності. Дізнайтеся, як сім основних класифікаторів обчислюють і візуально виражають достовірність своїх прогнозів. Розуміння прогнозованої ймовірності є ключовим для інтерпретації того, як моделі роблять вибір з різним рівнем впевненості.
Короткий зміст: Дізнайтеся про три безкоштовні рішення для ефективного покращення якості даних. Використовуйте олдскульні трюки роботи з базами даних, створюйте кастомні дашборди та генеруйте лінійки даних за допомогою Python. Спростіть процеси та зменшіть складність для покращення якості даних.
Два підходи до аналізу мультимодальних даних: спочатку вбудовуємо, потім робимо висновки за допомогою Amazon Titan Multimodal Embeddings та спочатку робимо висновки, потім вбудовуємо за допомогою Anthropic's Claude 3 Sonnet. Оцінювання за допомогою набору даних SlideVQA, що надає стислі відповіді на запитання користувачів.
Новий інструмент OpenAI, Sora, створює реалістичні відеокліпи з підказок, що викликає занепокоєння щодо розмивання межі між реальністю та контентом, створеним штучним інтелектом. Незважаючи на вражаючі візуальні ефекти, журналіст відчував себе радше засмученим, ніж враженим, коли побачив цей дивовижний реалізм.
Дослідники з Массачусетського технологічного інституту розробили нову методику для підвищення точності моделей машинного навчання для недостатньо представлених груп шляхом видалення певних точок даних. Цей метод усуває приховані упередження в навчальних наборах даних, забезпечуючи справедливі прогнози для всіх людей.
Pixtral 12B, найсучасніша модель мови технічного зору Mistral AI, чудово справляється з текстовими та мультимодальними завданнями, перевершуючи інші моделі. Вона має нову архітектуру з 400-мільйонним візуальним кодером і 12-мільярдним трансформаторним декодером, що забезпечує високу продуктивність і швидкість для розуміння зображень і документів.
Amazon Q Business використовує генеративний штучний інтелект для підвищення продуктивності працівників завдяки доступу до даних у режимі реального часу та безперешкодній інтеграції з корпоративними програмами за допомогою плагінів. Співробітники можуть виконувати дії та отримувати доступ до неіндексованих даних у різних додатках, використовуючи природну мову, оптимізуючи робочі процеси та заощ...