Data scientists, які переходять на керівні посади, потребують бізнес-навичок, таких як вільне володіння фінансами, щоб керувати ефективними ініціативами в галузі даних. Розуміння фінансових умов може допомогти адаптувати інсайти, підвищити успіх компанії і навіть домовитися про кращу оплату праці. Знання цифр відкриває двері до таких можливостей, як податкові знижки на інвестиції в R&D.
Інструменти штучного інтелекту Apple можуть переписувати тексти та електронні листи, але лінгвісти попереджають про втрату нюансів і характеру. Технологія спрямована на те, щоб користувачі звучали більш дружелюбно або професійно.
Графічні процесори NVIDIA RTX забезпечують 1300 найкращих результатів у іграх і творчості на основі ШІ. Приєднуйтесь до #WinterArtChallenge, щоб продемонструвати своє мистецтво та виграти можливість з'явитися в соціальних мережах NVIDIA Studio.
Співробітники британського Інституту Алана Тьюринга попереджають про ризики для довіри через звільнення керівництва та скорочення витрат. 90 співробітників висловлюють занепокоєння опікунам щодо керівництва організації.
Використання GPT-3.5 та Unstructured API для ефективного перекладу мемуарів Кармен Рози з іспанської на англійську зі збереженням суті оповіді. Технічна реалізація включає імпорт книги, переклад за допомогою GPT-3.5 та експорт у формат Docx з використанням API Unstructured.
DDPG покращує медичну робототехніку, керовану штучним інтелектом, вирішуючи проблему безперервного управління діями. Фреймворк Actor-Critic в DDPG поєднує в собі DPG і DQN для підвищення стабільності та продуктивності в середовищах з безперервними діями.
Дослідники з Массачусетського технологічного інституту розробили систему, що використовує великі мовні моделі для перетворення складних пояснень ШІ на просту мову, покращуючи розуміння користувача. Система оцінює якість розповіді, що дозволяє користувачам довіряти прогнозам машинного навчання і налаштовувати пояснення відповідно до конкретних потреб.
Моделі класифікації надають не лише відповіді, але й рівні впевненості через оцінки ймовірності. Дізнайтеся, як сім основних класифікаторів обчислюють і візуально виражають достовірність своїх прогнозів. Розуміння прогнозованої ймовірності є ключовим для інтерпретації того, як моделі роблять вибір з різним рівнем впевненості.
Короткий зміст: Дізнайтеся про три безкоштовні рішення для ефективного покращення якості даних. Використовуйте олдскульні трюки роботи з базами даних, створюйте кастомні дашборди та генеруйте лінійки даних за допомогою Python. Спростіть процеси та зменшіть складність для покращення якості даних.
Пол Маккартні попереджає, що штучний інтелект може загрожувати джерелам доходу для авторів, і закликає ухвалити закони проти масових крадіжок авторських прав компаніями, що займаються штучним інтелектом. Колишній «бітл» висловлює занепокоєння тим, що молоді композитори та письменники не можуть захистити свою інтелектуальну власність від алгоритмічних моделей.
Дослідники з Массачусетського технологічного інституту розробили нову методику для підвищення точності моделей машинного навчання для недостатньо представлених груп шляхом видалення певних точок даних. Цей метод усуває приховані упередження в навчальних наборах даних, забезпечуючи справедливі прогнози для всіх людей.
Федеральна поліція Австралії покладається на штучний інтелект для проведення розслідувань через величезні обсяги даних. В середньому аналізується 40 терабайт даних, при цьому кожні 6 хвилин повідомляється про кіберінцидент.
Pixtral 12B, найсучасніша модель мови технічного зору Mistral AI, чудово справляється з текстовими та мультимодальними завданнями, перевершуючи інші моделі. Вона має нову архітектуру з 400-мільйонним візуальним кодером і 12-мільярдним трансформаторним декодером, що забезпечує високу продуктивність і швидкість для розуміння зображень і документів.
Дослідники MIT CSAIL розробили ContextCite - інструмент для підвищення довіри до контенту, створеного штучним інтелектом, шляхом визначення зовнішніх джерел контексту. Цей інструмент допомагає користувачам перевіряти твердження, відстежувати помилки до джерел і виявляти галюцинації.
Великі мовні моделі, такі як ChatGPT, швидко розвиваються, але можуть демонструвати політичну упередженість. Дослідження Массачусетського технологічного інституту ставить під сумнів, чи можуть моделі винагороди бути одночасно правдивими та неупередженими.