Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Підвищення ефективності робочого процесу ML: Представляємо простори SageMaker Studio та інструменти генеративного ШІ

Amazon SageMaker Studio тепер пропонує повністю керований редактор коду на основі Code-OSS, а також JupyterLab та RStudio, що дозволяє розробникам ML налаштовувати та масштабувати свої IDE за допомогою гнучких робочих просторів під назвою Spaces. Ці простори забезпечують постійне зберігання даних і конфігурацію часу виконання, підвищуючи ефективність робочого процесу і дозволяючи безперешкодно...

Революція в моніторингу гірничодобувного обладнання за допомогою прототипування AWS і комп'ютерного зору

ICL, міжнародна виробнича та гірничодобувна корпорація, розробила власні можливості з використанням машинного навчання та комп'ютерного зору для автоматичного моніторингу свого гірничодобувного обладнання. За підтримки програми AWS Prototyping вони змогли створити фреймворк на AWS за допомогою Amazon SageMaker для отримання зображень з 30 камер, з потенціалом масштабування до тисяч.

Революція в рекомендаціях по роботі: Talent.com оптимізував обробку даних за допомогою Amazon SageMaker

Talent.com співпрацює з AWS для розробки системи рекомендацій щодо роботи з використанням глибокого навчання, яка обробляє 5 мільйонів щоденних записів менш ніж за 1 годину. Система включає в себе розробку функцій, архітектуру моделі глибокого навчання, оптимізацію гіперпараметрів та оцінку моделі, і все це за допомогою Python.

Створіть власний спортзал для АІ: Занурення в глибоке Q-навчання

Пориньте у світ штучного інтелекту - створіть з нуля тренажерний зал для навчання з глибоким підкріпленням. Отримайте практичний досвід і розробіть власний тренажерний зал, щоб навчити агента вирішувати прості завдання, закладаючи фундамент для більш складних середовищ і систем.

Автоматизуйте попереднє маркування PDF за допомогою AWS: Оптимізуйте підготовку навчальних даних для Amazon Comprehend

Amazon Comprehend пропонує попередньо навчені та кастомні API для обробки природної мови. Вони розробили інструмент попереднього маркування, який автоматично анотує документи, використовуючи наявні дані табличних об'єктів, зменшуючи ручну роботу, необхідну для навчання точних користувацьких моделей розпізнавання об'єктів.

Від слів до реальності: Зростання покоління "текст - САПР

Розвиток технологій перетворення тексту в зображення на основі штучного інтелекту призвів до появи великої кількості зображень низької якості, що викликало скептицизм і дезорієнтацію. Однак з'явилося нове явище - перетворення тексту в САПР за допомогою ШІ, в якому лідирують такі великі гравці, як Autodesk, Google, OpenAI та NVIDIA.

Виявлення прихованих закономірностей: Кластеризація спектральних даних у C#

Спектральна кластеризація - це складна техніка машинного навчання, яка виявляє закономірності в даних. Її реалізація включає в себе обчислення матриць афінності та лапласіанських матриць, власних векторів та виконання кластеризації за методом k-середніх.

Економне навчання: Ефективне навчання моделей GPT NeoX та Pythia за допомогою AWS Trainium

Великі мовні моделі (LLM), такі як GPT NeoX і Pythia, набувають все більшої популярності завдяки мільярдам параметрів і вражаючій продуктивності. Навчання цих моделей на AWS Trainium є економічно вигідним та ефективним завдяки таким оптимізаціям, як ротаційне позиційне вбудовування (ROPE) та техніка часткового обертання.

Революційна доставка "останньої милі": Оптимізація управління робочою силою за допомогою Amazon Forecast та крокових функцій AWS

Getir, піонер надшвидкої доставки продуктів, впровадив наскрізну систему управління персоналом з використанням Amazon Forecast і AWS Step Functions, що дозволило скоротити час моделювання на 70% і підвищити точність прогнозування на 90%. Цей комплексний проект розраховує потреби в кур'єрах і вирішує проблему розподілу змін, оптимізуючи графіки змін і мінімізуючи кількість пропущених замовлень.

Розкриття можливостей спектральної кластеризації: Ефективні методи перетворення власних векторів у кластерні мітки

У статті досліджуються поширені методи кластеризації даних з акцентом на спектральну кластеризацію. Виявлено, що використання k-середніх для обчислення міток кластерів з власних векторів є найкращим підходом, незважаючи на варіації та складнощі.

Суперечлива функція штучного інтелекту в Dropbox викликає занепокоєння щодо конфіденційності

Dropbox зіткнувся з негативною реакцією після того, як увімкнув налаштування за замовчуванням, яке дозволяє передавати дані користувачів до OpenAI для пошуку за допомогою штучного інтелекту, але запевняє, що дані передаються лише при активному використанні та видаляються протягом 30 днів. Генеральний директор Dropbox Дрю Х'юстон вибачається за плутанину і підкреслює, що жодні дані користувачів...

Прискорення трансформації TechCo Vodafone: Навички ML з AWS DeepRacer та Accenture

Vodafone трансформується в TechCo до 2025 року, плануючи залучити 50% своєї робочої сили до розробки програмного забезпечення та надавати 60% цифрових послуг власними силами. Щоб підтримати цей перехід, Vodafone уклав партнерство з Accenture та AWS для створення хмарної платформи та взяв участь у конкурсі AWS DeepRacer, щоб покращити свої навички машинного навчання.

Розкриття можливостей великих мовних моделей: Подорож з LM Studio

LM Studio - це інструмент, який дозволяє локально використовувати великі мовні моделі, такі як GPT-x, LLaMA-x та Orca-x, пропонуючи чистий та інтуїтивно зрозумілий інтерфейс для дослідження моделей та виконання завдань на міркування. Однак його творець і потенційні зв'язки з іншими компаніями залишаються незрозумілими.

Вдосконалення інтелектуальних помічників документів на основі RAG: Розкриття аналітичних можливостей за допомогою Amazon Bedrock

Розмовний ШІ розвинувся завдяки генеративному ШІ та великим мовним моделям, але йому бракує спеціалізованих знань для точних відповідей. Retrieval Augmented Generation (RAG) пов'язує загальні моделі з внутрішніми базами знань, що дозволяє створювати помічників ШІ, орієнтованих на конкретну галузь. Amazon Kendra і OpenSearch Service пропонують зрілі векторні пошукові рішення для реалізації RAG,...

Створення інтерактивних веб-інтерфейсів для магістрів за допомогою Amazon SageMaker JumpStart

У статті обговорюється запуск ChatGPT і зростання популярності генеративного ШІ. Висвітлюється створення веб-інтерфейсу під назвою Chat Studio для взаємодії з фундаментальними моделями в Amazon SageMaker JumpStart, включаючи Llama 2 і Stable Diffusion. Це рішення дозволяє користувачам швидко випробувати розмовний ШІ та покращити користувацький досвід завдяки інтеграції з медіа.