Межі квантування розширюються за допомогою ft-квантифікації, нового підходу до вирішення поточних обмежень алгоритмів. Ця техніка, що заощаджує пам'ять, стискає моделі та вектори для пошуку, популярна в LLM і векторних базах даних.
Sophos використовує ШІ та ML для захисту від кіберзагроз, налаштовуючи LLM для кібербезпеки. Amazon Bedrock підвищує продуктивність SOC за допомогою рішення Claude 3 Sonnet від Anthropic, що дозволяє боротися з втомою від постійних сповіщень.
Стартап Spines зіткнувся з негативною реакцією через використання ШІ для редагування та розповсюдження книг за $1,200-5,000. Критики ставлять під сумнів якість і вплив на традиційне книговидання.
Дізнайтеся, як налаштувати конфігурації життєвого циклу для доменів Amazon SageMaker Studio, щоб автоматизувати такі дії, як попередня інсталяція бібліотек і вимкнення непрацюючих ядер. Amazon SageMaker Studio - це перше середовище розробки, призначене для прискорення наскрізної розробки ML, що пропонує настроювані профілі користувачів домену та спільні робочі простори для ефективного управлін...
Нейроморфні обчислення переосмислюють апаратне забезпечення та алгоритми ШІ, натхненні мозком, щоб зменшити споживання енергії та вивести ШІ на новий рівень. Угода OpenAI з Rain AI на суму 51 мільйон доларів за нейроморфні чіпи свідчить про перехід до більш екологічного ШІ в центрах обробки даних.
Реалізував регресію AdaBoost з нуля на C#, використовуючи k-найближчих сусідів замість дерев рішень. Дослідив оригінальний алгоритм AdaBoost. R2 Друкера, створивши унікальну реалізацію без рекурсії.
Інтеграція Datadog з AWS Neuron оптимізує робочі навантаження ML на екземпляри Trainium та Inferentia, забезпечуючи високу продуктивність та моніторинг у реальному часі. Інтеграція з Neuron SDK забезпечує глибоке спостереження за виконанням моделі, затримками та використанням ресурсів, що сприяє ефективному навчанню та висновкам.
Salesforce централізує дані про клієнтів для отримання інсайтів. Amazon Q Business AI надає співробітникам можливість приймати рішення на основі даних і підвищувати продуктивність.
Ультраправі партії в Європі використовують штучний інтелект для поширення фейкових зображень і демонізації таких лідерів, як Еммануель Макрон. Експерти попереджають про політичну зброю генеративного ШІ в кампаніях після виборів у ЄС.
Марзіє Гассемі поєднує свою любов до відеоігор та здоров'я у роботі в Массачусетському технологічному інституті, зосереджуючись на використанні машинного навчання для покращення справедливості у сфері охорони здоров'я. Дослідницька група Гассемі в LIDS вивчає, як упередженість даних про стан здоров'я може вплинути на моделі машинного навчання, підкреслюючи важливість різноманітності та інклюзи...
Медичні LLM-моделі John Snow Labs на Amazon SageMaker Jumpstart оптимізують завдання з медичної мови, перевершуючи GPT-4o в узагальненні та відповідях на запитання. Ці моделі підвищують ефективність і точність для медичних працівників, підтримуючи оптимальний догляд за пацієнтами та результати медичної допомоги.
Інженер-програміст Джеймс МакКафрі розробив систему регресії дерева рішень на C# без рекурсії та вказівників. Він видалив індекси рядків з вузлів для економії пам'яті, що полегшило налагодження і зробило прогнози більш зрозумілими.
Meta Llama 3.1 LLM з підтримкою 8B та 70B виводів тепер на екземплярах AWS Trainium та Inferentia. SageMaker JumpStart пропонує безпечне розгортання попередньо навчених моделей для кастомізації та тонкого налаштування.
Інструменти генеративного ШІ, такі як ChatGPT і Claude, стрімко набирають популярність, змінюючи суспільство та економіку. Незважаючи на досягнення, економістам і практикам все ще бракує всебічного розуміння впливу ШІ на економіку.
Короткий зміст: Компроміс між зміщенням та дисперсією впливає на прогнозні моделі, балансуючи між складністю та точністю. На реальних прикладах показано, як недостатнє та надмірне пристосування впливає на продуктивність моделі.