У цій статті досліджується важливість класичних обчислень у контексті штучного інтелекту, підкреслюється їхня доведена правильність, сильне узагальнення та інтерпретованість порівняно з обмеженнями глибоких нейронних мереж. У ній стверджується, що розробка систем штучного інтелекту з цими класичними обчислювальними навичками має вирішальне значення для створення агентів із загальним інтелектом.
Цього року генеративний ШІ та великі мовні моделі домінували в корпоративних трендах, а такі компанії, як Amdocs, Dropbox та SAP, створювали індивідуальні додатки з використанням RAG та LLM. Попередньо навчені моделі з відкритим вихідним кодом повинні революціонізувати операційні стратегії бізнесу, тоді як готові ШІ та мікросервіси полегшують розробникам створення складних додатків.
Vodafone трансформується в TechCo до 2025 року, плануючи залучити 50% своєї робочої сили до розробки програмного забезпечення та надавати 60% цифрових послуг власними силами. Щоб підтримати цей перехід, Vodafone уклав партнерство з Accenture та AWS для створення хмарної платформи та взяв участь у конкурсі AWS DeepRacer, щоб покращити свої навички машинного навчання.
MLOps має важливе значення для інтеграції моделей машинного навчання в існуючі системи, а Amazon SageMaker пропонує такі функції, як конвеєри та реєстр моделей, щоб спростити цей процес. У цій статті наведено покрокову інструкцію зі створення власних шаблонів проектів, які інтегруються з GitHub та GitHub Actions, що дозволяє ефективно співпрацювати та розгортати моделі машинного навчання.
Федеральна торгова комісія США застерігає від шахрайства з використанням QR-кодів, які можуть заволодіти смартфонами, зняти шахрайські платежі або отримати особисту інформацію. Шахраї використовують QR-коди на кіосках для паркування, що призводить до появи сайтів-двійників, які переказують кошти на шахрайські рахунки.
Розвиток технологій перетворення тексту в зображення на основі штучного інтелекту призвів до появи великої кількості зображень низької якості, що викликало скептицизм і дезорієнтацію. Однак з'явилося нове явище - перетворення тексту в САПР за допомогою ШІ, в якому лідирують такі великі гравці, як Autodesk, Google, OpenAI та NVIDIA.
Магістри LLM, такі як Llama 2, Flan T5 і Bloom, необхідні для розмовних кейсів використання ШІ, але оновлення їхніх знань вимагає перепідготовки, що займає багато часу і коштує дорого. Однак завдяки Retrieval Augmented Generation (RAG) з використанням Amazon Sagemaker JumpStart і векторної бази даних Pinecone, LLM можна розгортати і підтримувати в актуальному стані відповідну інформацію, щоб з...
3D-художник Moonshine Studio Ерік Чанг (Eric Chiang) створює віртуального асистента на ім'я NANA зі штучним інтелектом, використовуючи можливості GPU-прискорення та відеокарту GeForce RTX 4090. Драйвери NVIDIA Studio тепер підтримують плагін Reallusion iClone AccuFACE та інші вдосконалення, а конкурс #WinterArtChallenge запрошує художників ділитися своїми творіннями на зимову тематику, щоб отр...
У статті досліджуються поширені методи кластеризації даних з акцентом на спектральну кластеризацію. Виявлено, що використання k-середніх для обчислення міток кластерів з власних векторів є найкращим підходом, незважаючи на варіації та складнощі.
Tesla випустила демонстраційне відео свого гуманоїдного робота Optimus Gen 2, яке демонструє значні апаратні покращення. Скептицизм залишається після нещодавніх суперечок щодо демонстрації ШІ.
LM Studio - це інструмент, який дозволяє локально використовувати великі мовні моделі, такі як GPT-x, LLaMA-x та Orca-x, пропонуючи чистий та інтуїтивно зрозумілий інтерфейс для дослідження моделей та виконання завдань на міркування. Однак його творець і потенційні зв'язки з іншими компаніями залишаються незрозумілими.
У статті обговорюється запуск ChatGPT і зростання популярності генеративного ШІ. Висвітлюється створення веб-інтерфейсу під назвою Chat Studio для взаємодії з фундаментальними моделями в Amazon SageMaker JumpStart, включаючи Llama 2 і Stable Diffusion. Це рішення дозволяє користувачам швидко випробувати розмовний ШІ та покращити користувацький досвід завдяки інтеграції з медіа.
Спектральна кластеризація - це складна техніка машинного навчання, яка виявляє закономірності в даних. Її реалізація включає в себе обчислення матриць афінності та лапласіанських матриць, власних векторів та виконання кластеризації за методом k-середніх.
У нашому світі, де панують дані, узагальнення має важливе значення, заощаджуючи час і покращуючи процес прийняття рішень. Він має різні застосування, включаючи агрегацію новин, узагальнення юридичних документів і фінансовий аналіз. З розвитком НЛП і штучного інтелекту такі методи, як екстрактивне та абстрактне узагальнення, стають все більш доступними та ефективними.
Проекти збору даних часто не досягають реального впливу через такі макроелементи, як наявність даних, набір навичок, часові рамки, організаційна готовність та політичне середовище. Наявність і доступність відповідних даних має фундаментальне значення, і якщо дані є недосяжними, доцільність проекту слід переглянути.