Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Еволюційна оптимізація для навчання логістичної регресії

Автор реалізує логістичну регресійну модель з використанням еволюційної оптимізації на мові C# на наборі даних для аутентифікації банкнот, досягаючи високої точності на тестових даних. Процес еволюційної оптимізації включає створення популяції можливих рішень та мутацію для пошуку найкращих ваг та зміщення для моделі.

Виявлення аномалій даних за допомогою LightGBM

Короткий зміст статті: Дізнайтеся, як використовувати LightGBM для виявлення аномалій шляхом нормалізації та кодування даних, створення автокодера з декількома модулями регресії для прогнозування вхідних векторів та виявлення аномалій для аналізу помилок реконструкції. Залучення вчителів математики надихнуло на кар'єру в математиці та комп'ютерних науках, а вигадані персонажі-професори з класи...

Піднімаємо планку: Менеджери продуктів зі штучного інтелекту

Керівники компаній повинні брати на себе відповідальність за результати продуктів ШІ, а не звинувачувати розробників. Практичний підхід, що має вирішальне значення для успішних моделей ШІ, вимагає більше зусиль і розуміння.

Дімітріс Берцімас: Проректор з відкритого навчання

Дімітріс Берцімас, призначений проректором з відкритого навчання в Массачусетському технологічному інституті, має на меті трансформувати навчання за допомогою цифрових технологій у всьому світі. Берцімас, відомий професор у галузі оптимізації та машинного навчання, керуватиме різноманітними продуктами MIT Open Learning.

Підвищення ефективності дерева рішень: Bootstrap та генетичні алгоритми

Дерева рішень можуть бути більш точними та інтерпретованими за допомогою нової техніки, що підвищує їхню ефективність. Дослідження інтерпретованого ШІ зосереджені на тому, щоб зробити дерева рішень більш ефективними і точними при менших розмірах.

Британський регулятор перевіряє $4 млрд інвестицій Amazon в стартап Anthropic зі штучного інтелекту

Британське антимонопольне відомство перевірить інвестиції Amazon у розмірі $4 млрд в компанію Anthropic, що є частиною серії розслідувань щодо технологічних зв'язків. Розпочато попереднє розслідування з метою визначення необхідності поглибленої перевірки з боку антимонопольного відомства.

Робот здобув перемогу в турнірі з настільного тенісу

Google DeepMind представив робота-гравця в настільний теніс зі штучним інтелектом, який демонструє потенціал машин у виконанні складних фізичних завдань. Система під назвою "AlphaPong" виграє 45% матчів у людей, що є важливою віхою в навчанні та управлінні роботами.

Генерація SQL за допомогою мови моделювання Looker на Amazon Bedrock від Twilio

Twilio співпрацює з AWS для розробки віртуального помічника для аналітиків даних, використовуючи Amazon Bedrock та RAG для дослідження даних на основі природної мови. Інструмент AskData від Twilio економить час, перетворюючи запитання користувачів на SQL-запити, підвищуючи ефективність і простоту використання для аналітиків даних.

Роботи опановують навички в нових умовах

Дослідники з Массачусетського технологічного інституту розробили алгоритм EES, який дозволяє роботам самостійно тренуватися та вдосконалювати навички. Протестований на роботі Spot від Boston Dynamics, EES показав швидкий прогрес у виконанні таких завдань, як маніпуляції та підмітання.

Освоєння n-крокового бутстрапінгу в навчанні з підкріпленням

Анотація: Навчання з підкріпленням досліджує адаптацію до різних середовищ за допомогою алгоритмів часової різниці. Однокрокові методи TD і MC мають спільні риси, що призводить до узагальнення n-крокового бутстрапінгу.

Еволюція інженерів ШІ: Перевтілення ролей

Інженери зі штучного інтелекту та науковці з прикладних даних адаптуються до мінливого ландшафту швидкого інжинірингу та розвитку штучного інтелекту, керованого дією. Впровадження RAG та моделей з відкритим вихідним кодом, таких як Semantic Kernel, змінюють ролі, вимагаючи нових навичок для оптимальної роботи.

Бульбашка штучного інтелекту, що луснула: Управління завищеними очікуваннями

Інвестори стикаються з наслідками, коли бульбашка АІ лускає, мільярди втрачаються на падінні фондового ринку технологій. Чат-бот ChatGPT від OpenAI досягнув 100 мільйонів користувачів за два місяці, що спричинило бум і статус єдинорога для 200+ стартапів у сфері ШІ.

Пастка поклоніння ШІ

Штучний інтелект викликає паніку, але реальна загроза піддається хайпу. ChatGPT від OpenAI наближає ШІ до інтелекту, відкриваючи шлях до трансформаційних суспільних змін.

Підвищення ефективності трансформатора зору за допомогою BatchNorm

Інтеграція пакетної нормалізації в архітектуру ViT скорочує час навчання та виведення більш ніж на 60%, зберігаючи або покращуючи точність. Модифікація передбачає заміну нормалізації шарів на пакетну нормалізацію в архітектурі трансформатора, що використовує лише кодер.

Хронологія AGI OpenAI викликає скептицизм

Ключові фігури в OpenAI, включаючи президента Грега Брокмана, беруть відпустки або переходять в конкуруючу Anthropic, що ставить під сумнів прогрес компанії на шляху до ШІ. Ці рішення викликають припущення про близькість прориву в області ШІ, оскільки високопоставлені співробітники залишають компанію, що займається розробкою ChatGPT.