Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Революція в розробці штучного інтелекту з Microsoft і NVIDIA

Ноутбуки та ПК на базі генеративного ШІ рухають вперед розвиток ігор і створення контенту: на 100 мільйонах комп'ютерів GeForce RTX AI по всьому світу працюють понад 600 додатків та ігор для Windows зі штучним інтелектом на базі ШІ. NVIDIA та Microsoft на конференції Microsoft Ignite представили інструменти, які допоможуть розробникам оптимізувати додатки зі штучним інтелектом на ПК RTX AI, за...

Мін'юст націлився на Google: Розпродаж браузера Chrome

Влада США має намір зруйнувати монополію Google на ринку пошукових систем шляхом примусового продажу браузера Chrome, що свідчить про масштабне втручання в технологічну індустрію. Міністерство юстиції розглядає структурні заходи, щоб не дозволити Google використовувати свої продукти, в тому числі штучний інтелект і Android.

Підвищення ефективності регресії за допомогою AdaBoost та k-NN слабких учнів

Реалізація регресії AdaBoost з нуля на Python, потім рефакторинг на C# з використанням k-найближчих сусідів замість дерев рішень. Алгоритм AdaBoost. Алгоритм R2 є модифікацією AdaBoost, і в Інтернеті можна знайти лише кілька робочих реалізацій на Python.

Роботи-мрійники: Шлях до навчання?

Дослідники MIT CSAIL розробили LucidSim, використовуючи генеративні симулятори штучного інтелекту та фізики для навчання роботів у різноманітних віртуальних середовищах, подолавши розрив між симуляцією та реальністю у навчанні роботів. Ідея виникла за межами кембриджської таверни, що призвело до прориву у створенні роботів експертного рівня без реальних даних.

Автоматизація огороджень Amazon Bedrock Guardrails за допомогою TDD

Amazon Bedrock Guardrails забезпечує основу для управління та контролю в додатках генеративного ШІ, забезпечуючи дотримання нормативних та етичних стандартів. Впроваджуючи такі запобіжники, як фільтри контенту та захист конфіденційності, організації можуть захистити свій ШІ в майбутньому, зберігаючи при цьому відповідальні практики завдяки підходу до розробки, що базується на тестуванні.

Штучний інтелект перевершує поетів: Дослідження показало, що

Читачі, які не знаються на поезії, віддають перевагу віршам зі штучним інтелектом через їхню простоту та доступність. Дослідження показало, що учасники часто плутають вірші зі штучним інтелектом із написаними людиною.

Революційні дослідження стійких матеріалів з NVIDIA ALCHEMI NIM

Дослідники та розробники використовують ШІ та мікросервіс NVIDIA ALCHEMI NIM для прискорення пошуку нових матеріалів для зберігання енергії та вирішення екологічних проблем, значно скорочуючи витрати та час. SES AI використовує цю технологію для прискорення ідентифікації матеріалів електролітів для літій-металевих батарей, демонструючи багатообіцяючі результати для прискорення інновацій у відк...

Відкриваючи чеські тексти: NER з XLM-RoBERTa

Короткий зміст: Розробник ділиться досвідом застосування НЛП-моделі для обробки документів чеською мовою, зосереджуючись на ідентифікації об'єктів. Модель була навчена на 710 PDF-документах з використанням ручного маркування та уникненням підходів на основі обмежувальних рамок для підвищення ефективності.

Оптимізація нейронних мереж за допомогою квантування

Великі моделі ШІ дорогі у використанні та навчанні, тому основна увага приділяється квантуванню для зменшення розміру моделі при збереженні точності. Два ключові підходи, що обговорюються, - це квантування після навчання (PTQ) і навчання з урахуванням квантування (QAT), кожен з яких має свої власні методи мінімізації втрати точності.

Революційна взаємодія страхових агентів з Amazon Bedrock та штучним інтелектом

InsuranceDekho спрощує купівлю страхових полісів за допомогою технології штучного інтелекту, покращуючи обслуговування клієнтів та продажі. Використання Amazon Bedrock і Claude від Anthropic покращує Health Pro Genie від InsuranceDekho, надаючи ефективні рекомендації щодо страхових планів.

Максимізація ефективності за допомогою бінарних вбудовувань в Amazon Titan

Amazon представляє двійкові вбудовування для Amazon Titan Text Embeddings V2 в Amazon Bedrock і OpenSearch Serverless, що зменшує використання пам'яті та витрати. Amazon Bedrock пропонує високопродуктивні базові моделі та можливості для генеративних додатків ШІ, а OpenSearch Serverless підтримує бінарні вектори для сучасного пошуку за допомогою ML.

Оптимізація медичних даних за допомогою Amazon Bedrock

Генеративний ШІ трансформує аналіз медичних даних у MSD, дозволяючи швидко і точно генерувати SQL-запити з природної мови. Співпраця з AWS GenAIIC впорядковує вилучення даних, надаючи користувачам можливість ефективно приймати рішення на основі даних.