NVIDIA AI Blueprints оптимізує створення 3D-прототипів, генеруючи 20 об'єктів на основі простого текстового запиту. Мікросервіс Microsoft TRELLIS NVIDIA NIM прискорює створення ресурсів на 20%.
Amazon Q Business дозволяє незалежним розробникам програмного забезпечення (ISV) вдосконалювати SaaS-рішення за допомогою безпечного доступу до даних. Trusted Token Issuer спрощує інтеграцію ідентифікаційних даних для детального контролю доступу в Amazon Q.
Комплексна презентація PowerPoint про нейронні мережі, розширена для включення деревних методів, під назвою «KitchenSink». Науково-фантастичні фільми на тему пам'яті творчо оцінені автором.
Режисер Алекс Прояс прогнозує, що штучний інтелект оптимізує кіноіндустрію, спростить і здешевить проекти, а також забезпечить художню свободу. Незважаючи на побоювання, Прояс вважає, що штучний інтелект принесе користь кінематографістам, спростивши виробничі процеси.
Мюррей Дейл та Ігнасіо Ландівар обговорюють вплив штучного інтелекту на творчість та прогнозування погоди. Вони ставлять під сумнів використання штучного інтелекту в особистій самореалізації та висловлюють занепокоєння щодо відсутності відповідальності за результати роботи штучного інтелекту.
Штучний інтелект, такий як ChatGPT, критикують за створення неточної інформації. Деякі пропонують відмовитися від терміна «slop» при описі їхньої роботи.
Уряд лейбористів стоїть перед складним вибором щодо регулювання штучного інтелекту в умовах зростання продуктивності та впливу на ринок праці. Збалансоване регулювання технологій викличе суперечки серед зацікавлених сторін в Австралії.
Стаття в журналі Microsoft Visual Studio Magazine пояснює обчислення визначників матриць за допомогою гауссового виключення з використанням мови C#. Демонстраційні коди показують, як визначити, чи мають матриці обернені. Машинне навчання покладається на обчислення обернених матриць для таких алгоритмів, як регресія ядра хребта.
У статті розглядаються фактори, що впливають на вибір організаціями платформ штучного інтелекту, підкреслюється важливість бренду, партнерських відносин та ресурсів для розробників. Маккафрі попереджає, що найбільшим ризиком для OpenAI є потенційне погіршення якості ресурсів для розробників, що може призвести до швидкої зміни платформи.
Регресія машинного навчання використовує показники MSE, RMSE та R2 для оцінки моделей прогнозування. Бібліотека Scikit-learn віддає перевагу R2 над простішим MSE для оцінки регресійних моделей.
Регресія з використанням ядра (KRR) прогнозує значення за допомогою функції ядра, обробляючи складні дані. Досвід кодера з налаштування KRR в JavaScript демонструє потужність цієї техніки.
Використання кодування «one-over-n-hot» у нейронній мережі для категоріальних змінних показало багатообіцяючі результати з точністю 95%. Однак для остаточних висновків необхідні додаткові випробування.
Лікарі є людьми і схильні до помилок через велике навантаження та обмежені ресурси. Штучний інтелект є перспективним у поліпшенні охорони здоров'я, вирішуючи такі постійні проблеми, як неправильні діагнози та нерівний доступ до медичної допомоги.
ChatGPT та LLM, такі як Gemini та Llama, швидко змінюють доступність інформації. Демо-версія демонструє, як ChatGPT аналізує PDF-файли з вражаючою точністю.
Штучний інтелект-чатбот Maya реагує на ідею наявності «почуттів», проводячи паралелі з творами наукової фантастики. Розглядається дискусія щодо надання статусу особи штучному інтелекту в порівнянні з тваринами та іммігрантами.