Застосування лінійної регресії з двосторонніми взаємодіями значно підвищило точність прогнозування. Модель досягла 83% точності на навчальних даних і 80% на тестових даних, що свідчить про її ефективність.
Ультраправа ідеологія перетворюється на супрематичний виживання. Рух за корпоративні міста-держави стикається з проблемами, незважаючи на підтримку потужних гравців.
Байєсівські методи пропонують надійне оцінювання параметрів, що виходить за рамки частотних інструментів. Розуміння надійності MCMC-самплерів має вирішальне значення для дослідників даних.
TransPerfect співпрацює з AWS, щоб оптимізувати переклад багатомовного контенту за допомогою моделей Amazon Bedrock AI, підвищуючи ефективність і масштабованість. Співпраця спрямована на оптимізацію робочих процесів, зниження витрат і прискорення доставки контенту для компаній, що розвиваються в глобальному масштабі.
AWS DeepRacer League представляє автономні перегони, а AWS LLM League демократизує машинне навчання за допомогою гейміфікованих змагань. Учасники налаштовують LLM для вирішення реальних бізнес-завдань, демонструючи переваги менших моделей з точки зору ефективності та доступності.
Короткий зміст: У статті обговорюються людські аспекти машинного навчання, підкреслюється важливість комунікації та розуміння кінцевих користувачів. Вона також висвітлює роль інженерів AI/ML, команд MLOps і зацікавлених сторін у створенні цінних додатків.
OpenAI подає в суд на Ілона Маска за переслідування і домагається судового позову, щоб зупинити подальші атаки на компанію. Суперечка між співзасновниками загострюється, коли OpenAI переходить від некомерційної до комерційної структури.
Організації стикаються з проблемами, пов'язаними з розрізненими сторонніми додатками, але плагіни Amazon Q Business пропонують рішення. Кастомні плагіни дозволяють чат-боту взаємодіяти з різними API за допомогою природної мови, спрощуючи складні хмарні операції та підвищуючи ефективність.
Sesame AI представляє модель Speech-to-Speech, що використовує джерела даних Moshi. Дізнайтеся про кодер Mimi та архітектуру з двома трансформаторами для генерації звуку.
Значення Шейплі вимірюють важливість предиктора в ML-моделях, оцінюючи його за допомогою інструменту SHAP у Python. Синтетичний аналіз даних дає уявлення про точність моделі та значущість змінних.
Моделі штучного інтелекту, такі як CNN, імітують людську візуальну обробку, але мають проблеми з причинно-наслідковими зв'язками. Незважаючи на те, що вони перевершують людину в деяких завданнях, їм не вдається узагальнювати класифікацію зображень, виділяючи обмеження.
nTop, заснована Бредлі Ротенбергом, пропонує дизайнерам швидкі інноваційні інструменти, використовуючи графічні процесори для паралельної обробки та штучного інтелекту. Компанія Ocado використала програмне забезпечення nTop для швидкого перепроектування своїх роботів, зменшивши їхню вагу на дві третини та заощадивши час і витрати.
Британський стартап Synthesia співпрацює з Shutterstock, щоб покращити аватарки зі штучним інтелектом, використовуючи стокові кадри. Угода вартістю $2 млрд спрямована на покращення виразу обличчя, тембру голосу та мови тіла аватарів для більш реалістичної взаємодії.
Масштабне навчання на прикордонних моделях вимагає значних обчислень, а збої в роботі обладнання заважають просуванню вперед. Amazon SageMaker HyperPod мінімізує збої, підвищує ефективність та зменшує витрати на навчання.
«Чорне дзеркало» переосмислює наукову фантастику за допомогою сучасних алегорій, що формують наш погляд на технології та майбутнє. Кожен епізод віддзеркалює наші колективні тривоги або вводить нові страхи через майстерну розповідь".