NVIDIA AI Blueprints оптимізує створення 3D-прототипів, генеруючи 20 об'єктів на основі простого текстового запиту. Мікросервіс Microsoft TRELLIS NVIDIA NIM прискорює створення ресурсів на 20%.
Інтелектуальна обробка документів автоматизує вилучення даних з різних форматів, забезпечуючи ефективні робочі процеси в різних галузях. Моделі Amazon Nova в Amazon Bedrock пропонують комплексний підхід до створення та оцінки рішень з вилучення ключової інформації для завдань обробки документів.
RAG покращує роботу додатків штучного інтелекту, надаючи FM додаткові дані. Amazon Bedrock популярний для впровадження робочих процесів RAG за допомогою Terraform. Це рішення автоматизує ролі IAM та конфігурацію OpenSearch для ефективного управління даними.
OpenAI вводить нові заходи захисту для підлітків, які користуються ChatGPT, після судового позову щодо самогубства підлітка. У разі виявлення тривоги під час розмов з чат-ботами ШІ батькам будуть надсилатися сповіщення.
Вікторіанський адвокат втратив ліцензію за те, що не перевірив цитати, згенеровані штучним інтелектом, у судовій справі. Перші професійні санкції в Австралії за використання штучного інтелекту.
Синтетичні дані імітують реальні дані для штучного інтелекту, захищаючи конфіденційність та прискорюючи розробку моделей. Генеративні моделі можуть створювати реалістичні синтетичні дані для різних модальностей, таких як мова, зображення, аудіо та табличні дані.
Дослідники MIT підвищують точність прогнозування хімічних реакцій за рахунок врахування фізичних обмежень. Нова програма FlowER забезпечує збереження маси та електронів, революціонізуючи моделювання реакцій.
Комплексна презентація PowerPoint про нейронні мережі, розширена для включення деревних методів, під назвою «KitchenSink». Науково-фантастичні фільми на тему пам'яті творчо оцінені автором.
Мюррей Дейл та Ігнасіо Ландівар обговорюють вплив штучного інтелекту на творчість та прогнозування погоди. Вони ставлять під сумнів використання штучного інтелекту в особистій самореалізації та висловлюють занепокоєння щодо відсутності відповідальності за результати роботи штучного інтелекту.
Режисер Алекс Прояс прогнозує, що штучний інтелект оптимізує кіноіндустрію, спростить і здешевить проекти, а також забезпечить художню свободу. Незважаючи на побоювання, Прояс вважає, що штучний інтелект принесе користь кінематографістам, спростивши виробничі процеси.
Штучний інтелект, такий як ChatGPT, критикують за створення неточної інформації. Деякі пропонують відмовитися від терміна «slop» при описі їхньої роботи.
Регресія машинного навчання використовує показники MSE, RMSE та R2 для оцінки моделей прогнозування. Бібліотека Scikit-learn віддає перевагу R2 над простішим MSE для оцінки регресійних моделей.
ChatGPT та LLM, такі як Gemini та Llama, швидко змінюють доступність інформації. Демо-версія демонструє, як ChatGPT аналізує PDF-файли з вражаючою точністю.
У статті розглядаються фактори, що впливають на вибір організаціями платформ штучного інтелекту, підкреслюється важливість бренду, партнерських відносин та ресурсів для розробників. Маккафрі попереджає, що найбільшим ризиком для OpenAI є потенційне погіршення якості ресурсів для розробників, що може призвести до швидкої зміни платформи.
Стаття в журналі Microsoft Visual Studio Magazine пояснює обчислення визначників матриць за допомогою гауссового виключення з використанням мови C#. Демонстраційні коди показують, як визначити, чи мають матриці обернені. Машинне навчання покладається на обчислення обернених матриць для таких алгоритмів, як регресія ядра хребта.