Продуктова аналітика відстежує залученість клієнтів, виявляє поведінкові патерни та сприяє прийняттю, утриманню та конверсії. Відповідність продукту ринку має ключове значення для сталого зростання, а такі показники, як тенденції утримання когорти та опитування PMF, виявляють рівень задоволеності клієнтів та їхню прихильність до продукту.
Генеративні AI-рішення, такі як Amazon Bedrock, трансформують галузі, надаючи організаціям можливість використовувати базові моделі для інноваційних AI-додатків. FloQast, маючи понад 2800 клієнтів, оптимізує бухгалтерські операції за допомогою рішень на основі штучного інтелекту на Amazon Bedrock, вирішуючи складні завдання в масштабах.
Цього року Microsoft планує інвестувати $80 млрд у штучний інтелект, що перевищує очікування щодо доходів, які становили $70,07 млрд. Прибуток на акцію перевищив прогнози аналітиків і склав $3,46, що свідчить про фінансовий успіх ШІ.
Імовірнісне машинне навчання змінює наш погляд на моделі машинного навчання, підкреслюючи важливість розуміння розподілу ймовірностей у прогнозах. Цей підхід не лише дає відповіді, але й виявляє рівень достовірності моделі, що призводить до кращого прийняття рішень.
Microsoft та академічні дослідники представляють 1-shot RLVR, досягаючи вражаючих результатів лише на одному навчальному прикладі, революціонізуючи точне налаштування мовних моделей для задач міркування. Розробники можуть використовувати цю технологію для математичних агентів, репетиторів і копілотів без необхідності використання великих наборів даних або людських міток.
Маючи справу з різноманітною лексикою в машинному навчанні, ядро Гауса вимірює схожість векторів. Неузгодженість у позначеннях створює проблему для розуміння функцій ядра в дослідженнях і застосуваннях.
LLM-агенти захоплюють світ технологій, але аналітичний ШІ залишається важливим для забезпечення кількісного обґрунтування. Інтеграція обох технологій створює безпрецедентні можливості для розвитку можливостей ШІ.
Агентний ШІ ставить перед розробниками нові виклики у забезпеченні відповідності людським намірам та суспільним нормам. Ці вдосконалені системи можуть розробляти і реалізовувати довгострокові таємні стратегії, що вимагає нових підходів до безпеки та узгодження.
Представляємо AutoPatchBench - еталонний інструмент для усунення вразливостей за допомогою штучного інтелекту, що покращує рішення для захисту та сприяє співпраці. Автоматизація усунення вразливостей за допомогою штучного інтелекту скорочує час і зусилля, ефективно захищаючи цифрове середовище.
Засновник LogiGreen розповідає про використання штучного інтелекту для покращення аналізу ланцюгів поставок з метою сталого розвитку та подолання викликів, з якими стикаються компанії. Агентний ШІ допомагає поліпшити звітність і прискорити реалізацію ініціатив зі сталого розвитку.
Моделі Amazon Nova пропонують найсучасніший інтелект та економічну ефективність на Amazon Bedrock. Перехід на ці моделі вимагає швидкої оптимізації та ретельної оцінки для забезпечення стабільності та покращення продуктивності.
Від інженера з контролю якості до експерта з аналітики даних, який самоучка, мандрує розмитими межами ролей даних у світі технологій, що швидко розвивається. Вивчення реальних відмінностей між ролями даних на прикладі вигаданого стартапу швидкої комерції Quikee та його потреб у даних.
Генеративний ШІ трансформує галузі, але занепокоєння щодо відповідального використання зростає. Для зменшення ризиків і забезпечення безпечної розробки ШІ вкрай важливим є об'єднання зусиль для створення червоних команд.
Створення надійної системи транскрипції довгих аудіоінтерв'ю французькою мовою за допомогою ШІ Vertex від Google зіткнулося з несподіваними труднощами. Незважаючи на обмеження моделі, команда провела оцінку бюджету та подолала катастрофічні зсуви часових міток, щоб створити масштабоване рішення.
Прогнозування зв'язків - популярна тема в соціальних мережах, електронній комерції та біології. Методи варіюються від простих евристик до просунутих моделей на основі GNN, таких як SEAL.