Великі мовні моделі (ВММ) можуть бути точно налаштовані за допомогою навчання з підкріпленням на основі зворотного зв'язку від людини для узгодження з уподобаннями користувача. Цей метод, відомий як супервирівнювання, дозволяє LLM налаштовувати параметри безпосередньо до наборів даних, оминаючи потребу в послугах людського анотування.
Компанії переходять з OpenAI на Amazon Nova, щоб отримати економічно ефективні моделі штучного інтелекту з ширшими можливостями. Amazon Nova пропонує різні моделі, такі як Pro, Lite і Micro, кожна з яких оптимізована для різних застосувань з меншими витратами та вищою ефективністю.
Amazon Bedrock Evaluations тепер пропонує загальний доступ до функцій оцінювання LLM-as-a-judge та RAG, а також нові можливості BYOI для зовнішніх систем RAG. Нові метрики цитування дають глибше розуміння точності та релевантності системи RAG, оптимізуючи продуктивність та якість ШІ.
Афрофутуризм ставить питання про те, хто формує майбутнє на тлі обіцянок і страхів щодо штучного інтелекту. Лонні Аві Брукс та Рейнальдо Андерсон очолюють боротьбу за різноманітні перспективи в технологіях.
AWS розробляє AI Workforce - систему дронів і штучного інтелекту для безпечніших, швидших і точніших перевірок інфраструктури. Система використовує автономні дрони, оснащені сучасними датчиками та штучним інтелектом, щоб зменшити ризики для людей, підвищити ефективність та надати кращі дані для проактивного технічного обслуговування.
Алгоритм Flash Attention революціонізує трансформатори, оптимізуючи доступ до пам'яті, роблячи обчислення швидшими та ефективнішими. Flash Attention v3 впроваджує покращення для графічних процесорів Nvidia Hopper та Blackwell, що ще більше підвищує продуктивність.
Інвестиції у відновлювану енергетику досягли рекордного рівня, але майбутнє непевне. Енергетична конференція Массачусетського технологічного інституту обговорює необхідність рівних правил гри та державної підтримки для прориву в галузі чистої енергетики.
Автори протестують проти використання LibGen для навчання штучного інтелекту. Кейт Моссе, Трейсі Шевальє та Далджит Награ вийшли на демонстрацію до офісу Meta у Кінгс-Кроссі.
Юридичні контракти мають вирішальне значення для бізнесу, але їх розуміння та вилучення інформації може бути складним. Впровадження GraphRAG в Neo4j може спростити цей процес, структуруючи контракти у вигляді графа знань, що дозволяє здійснювати більш точний і контекстно-орієнтований пошук.
Угода Reddit з Google на $60 млн щодо використання даних користувачів для навчання ШІ викликає занепокоєння з приводу конфіденційності. Vana пропонує децентралізовану мережу, де користувачі володіють і контролюють свої дані, що змінює розвиток ШІ.
Корпорація OMRON прагне трансформувати бізнес-моделі за допомогою інноваційної платформи OMRON Data & Analytics Platform (ODAP), яка використовує Amazon Web Services для розширеної інтеграції даних і можливостей генеративного штучного інтелекту. Розбиваючи ізоляцію даних і вирішуючи проблеми управління, ODAP надає цінну інформацію для оптимізації операцій і підвищення якості обслуговування клі...
Агенти штучного інтелекту в роздрібній торгівлі надають персоналізований досвід, збагачують знання про товари та пропонують багатоканальну підтримку, переосмислюючи досвід покупок завдяки безшовній інтеграції та можливостям віртуальної примірки. Згідно з останнім звітом NVIDIA, рітейлери, які використовують ШІ, надають перевагу гіперперсоналізованим рекомендаціям для збільшення онлайн-продажів...
Інтерпретація моделі машинного навчання може бути складним завданням. Експеримент показав, що вік і дохід мають найбільший вплив на прогнозування політичних уподобань.
Модель дифузії, вперше запропонована Солом-Дікштейном та ін. і розвинута Хо та ін., була адаптована OpenAI та Google для створення DALLE-2 та Imagen, здатних генерувати високоякісні зображення. Модель працює шляхом перетворення шуму в зображення за допомогою процесів прямої та зворотної дифузії, зберігаючи розмірність оригінального зображення в латентному просторі.
Дослідники з Массачусетського технологічного інституту розробили фреймворк, який дозволяє ChatGPT ефективно вирішувати складні завдання планування з 85% успішністю, що перевищує базові показники. Цей універсальний підхід може оптимізувати такі завдання, як планування екіпажів авіакомпаній або управління машинним часом на заводах, революціонізуючи допомогу в плануванні.