Клієнти AWS в регіоні EMEA, такі як Il Sole 24 Ore та Booking.com, успішно використовують генеративний ШІ для покращення клієнтського досвіду та підвищення операційної ефективності. Компанії використовують сервіси AWS для впровадження рішень зі штучного інтелекту, які надають персоналізовані рекомендації та покращують якість обслуговування, створюючи передумови для майбутнього зростання у свої...
Представляємо AutoPatchBench - еталонний інструмент для усунення вразливостей за допомогою штучного інтелекту, що покращує рішення для захисту та сприяє співпраці. Автоматизація усунення вразливостей за допомогою штучного інтелекту скорочує час і зусилля, ефективно захищаючи цифрове середовище.
Генеративний ШІ трансформує галузі, але занепокоєння щодо відповідального використання зростає. Для зменшення ризиків і забезпечення безпечної розробки ШІ вкрай важливим є об'єднання зусиль для створення червоних команд.
Засновник LogiGreen розповідає про використання штучного інтелекту для покращення аналізу ланцюгів поставок з метою сталого розвитку та подолання викликів, з якими стикаються компанії. Агентний ШІ допомагає поліпшити звітність і прискорити реалізацію ініціатив зі сталого розвитку.
Від інженера з контролю якості до експерта з аналітики даних, який самоучка, мандрує розмитими межами ролей даних у світі технологій, що швидко розвивається. Вивчення реальних відмінностей між ролями даних на прикладі вигаданого стартапу швидкої комерції Quikee та його потреб у даних.
Маючи справу з різноманітною лексикою в машинному навчанні, ядро Гауса вимірює схожість векторів. Неузгодженість у позначеннях створює проблему для розуміння функцій ядра в дослідженнях і застосуваннях.
Агентний ШІ ставить перед розробниками нові виклики у забезпеченні відповідності людським намірам та суспільним нормам. Ці вдосконалені системи можуть розробляти і реалізовувати довгострокові таємні стратегії, що вимагає нових підходів до безпеки та узгодження.
Моделі Amazon Nova пропонують найсучасніший інтелект та економічну ефективність на Amazon Bedrock. Перехід на ці моделі вимагає швидкої оптимізації та ретельної оцінки для забезпечення стабільності та покращення продуктивності.
Прогнозування зв'язків - популярна тема в соціальних мережах, електронній комерції та біології. Методи варіюються від простих евристик до просунутих моделей на основі GNN, таких як SEAL.
Створення надійної системи транскрипції довгих аудіоінтерв'ю французькою мовою за допомогою ШІ Vertex від Google зіткнулося з несподіваними труднощами. Незважаючи на обмеження моделі, команда провела оцінку бюджету та подолала катастрофічні зсуви часових міток, щоб створити масштабоване рішення.
LLM-агенти захоплюють світ технологій, але аналітичний ШІ залишається важливим для забезпечення кількісного обґрунтування. Інтеграція обох технологій створює безпрецедентні можливості для розвитку можливостей ШІ.
GenAI трансформує ШІ, полегшуючи його інтеграцію в продукти, але з новими викликами. На відміну від традиційного програмного забезпечення, оцінки мають вирішальне значення для того, щоб системи ШІ працювали за призначенням.
Бібліотека NumExpr стверджує, що вона до 15 разів швидша за NumPy для чисельних обчислень. Тест продуктивності показує, що NumExpr виконує завдання в 6 разів швидше, ніж NumPy.
Науковий співробітник MIT MAD Александр Хтет Кьо (Alexander Htet Kyaw) поєднує штучний інтелект, доповнену реальність і робототехніку, щоб революціонізувати онлайн-покупку меблів за допомогою Curator AI. Його інновації мають потенціал трансформувати те, як ми взаємодіємо з навколишнім середовищем, і спростити складні процеси.
Feel-Write, додаток для ведення журналів на основі штучного інтелекту, викликає занепокоєння щодо довіри до систем штучного інтелекту, які обробляють конфіденційні дані, що спонукає до переходу до більш ефективного управління даними та підзвітності. Поспішаючи інтегрувати інструменти ШІ, часто забувають про важливість довіри, що підкреслює необхідність відповідального прийняття рішень у будівн...