AWS DeepRacer League представляє автономні перегони, а AWS LLM League демократизує машинне навчання за допомогою гейміфікованих змагань. Учасники налаштовують LLM для вирішення реальних бізнес-завдань, демонструючи переваги менших моделей з точки зору ефективності та доступності.
Моделі штучного інтелекту, такі як CNN, імітують людську візуальну обробку, але мають проблеми з причинно-наслідковими зв'язками. Незважаючи на те, що вони перевершують людину в деяких завданнях, їм не вдається узагальнювати класифікацію зображень, виділяючи обмеження.
Байєсівські методи пропонують надійне оцінювання параметрів, що виходить за рамки частотних інструментів. Розуміння надійності MCMC-самплерів має вирішальне значення для дослідників даних.
Модель Pixtral Large від Mistral AI тепер доступна на Amazon Bedrock, пропонуючи потужне мультимодальне ШІ-рішення зі 124 мільярдами параметрів. Ця модель відмінно справляється з багатомовним аналізом тексту, інтерпретацією графіків і загальним візуальним розумінням, революціонізуючи різні завдання, керовані даними.
Стаття в журналі Microsoft Visual Studio Magazine за квітень 2025 року демонструє лінійну векторну регресію з використанням C# з еволюційним навчанням. Лінійна SVR карає викиди і зберігає значення моделі малими, але простіші методи, такі як L1 і L2 регресія, є більш популярними.
Джеррі Адамс розглядає можливість судового позову проти компанії Meta за використання його книг для навчання штучного інтелекту без дозволу. Мета включила щонайменше сім його книг до переліку авторських матеріалів.
Британський стартап Synthesia співпрацює з Shutterstock, щоб покращити аватарки зі штучним інтелектом, використовуючи стокові кадри. Угода вартістю $2 млрд спрямована на покращення виразу обличчя, тембру голосу та мови тіла аватарів для більш реалістичної взаємодії.
«Чорне дзеркало» переосмислює наукову фантастику за допомогою сучасних алегорій, що формують наш погляд на технології та майбутнє. Кожен епізод віддзеркалює наші колективні тривоги або вводить нові страхи через майстерну розповідь".
Масштабне навчання на прикордонних моделях вимагає значних обчислень, а збої в роботі обладнання заважають просуванню вперед. Amazon SageMaker HyperPod мінімізує збої, підвищує ефективність та зменшує витрати на навчання.
Відкрийте для себе найкращі страви на основі сиру та хліба в Міжнародному валлійському центрі рідкісних страв. Лікар просить забрати плаценту додому, щоб прикрасити її трояндами, розпалюючи цікавість.
Графічні процесори NVIDIA GeForce RTX 50 серії та RTX PRO на архітектурі Blackwell покращують творчі робочі процеси за допомогою інструментів ШІ в DaVinci Resolve Studio 20. Нові функції ШІ, такі як шумозаглушення UltraNR і магічна маска, спрощують процеси редагування відео та постпродакшну, працюючи швидше на графічних процесорах RTX для підвищення ефективності та продуктивності.
Deb8flow використовує ШІ-агентів, таких як «За» і «Проти», для автономних дебатів, з перевіркою фактів і модерацією в режимі реального часу. Удосконалена архітектура використовує LangGraph та GPT-4o, гарантуючи, що дебати залишаються заснованими на правді.
Колишній дослідник ділиться інсайдами про те, як розпочати проект машинного навчання з правильного визначення проблеми для досягнення успіху. Підкреслює важливість розуміння, пошуку та вирішення бізнес-проблеми, прихованої в наборах даних.
Банк Англії попереджає, що програми штучного інтелекту можуть маніпулювати ринками з метою отримання прибутку, посилаючись на ризики у звіті про автономні системи. Здатність штучного інтелекту використовувати можливості викликає занепокоєння у банків і трейдерів, повідомляє комітет з фінансової політики.
Дослідники Массачусетського технологічного інституту та лабораторії штучного інтелекту MIT-IBM Watson AI Lab розробляють революційний мультимодальний підхід з використанням великих мовних моделей та графових моделей для оптимізації дизайну молекул, що дозволяє підвищити рівень успішності з 5% до 35%. Ця інноваційна методика може автоматизувати весь процес проектування та синтезу молекул, що по...