Новий президент Королівського товариства сліпих дітей закликає вдосконалити розробку технологій штучного інтелекту для людей з вадами зору, наголошуючи на проблемах дискримінації. Том Пей наголошує на необхідності кращої доступності відеоігор та ШІ-агентів для незрячих дітей, щоб запобігти виключенню їх з технологічного прогресу.
RLHF покращує навчання LLM шляхом включення людського зворотного зв'язку для покращення продуктивності моделі, зменшення упередженості та підвищення правдивості. Успіх OpenAI з InstructGPT і ChatGPT демонструє потенціал RLHF у точному налаштуванні попередньо навчених моделей для отримання кращих результатів.
Lettria, партнер AWS, показує, як GraphRAG підвищує точність генеративного ШІ на 35% порівняно з векторними методами. Графіки покращують взаємозв'язки між даними, що призводить до більш точних і контекстно-точних відповідей на складні запити.
Моделі машинного навчання можуть надавати інтервали прогнозування для врахування невизначеності результатів, допомагаючи приймати обґрунтовані рішення. Конформне прогнозування пропонує глибокі інтервали прогнозування зі слабкими теоретичними гарантіями, що підвищує точність прогнозів.
PydanticAI представляє підхід до розробки агентних додатків на основі оцінювання, що вирішує такі проблеми, як недетермінованість та обмеження LLM. Фреймворк дозволяє імітувати залежності, що дає змогу розробникам ефективно створювати додатки, керовані оцінюванням.
ШІ-зображення Папи Франциска, який обіймає Мадонну, стали вірусними, викликавши суперечки щодо використання технології deepfake у створенні ШІ-мистецтва. Дебати висвітлюють етичні проблеми, пов'язані з мимовільним залученням понтифіка до символічних цифрових творінь.
Новий підхід LEC ефективно класифікує порушення безпеки контенту та оперативно реагує на ін'єкційні атаки, використовуючи приховані стани проміжних трансформаторних шарів. LEC перевершує спеціалізовані моделі та GPT-4o, пропонуючи легке та ефективне рішення для бізнесу для захисту від маніпуляцій з моделями.
Набори даних зображень природи мають величезний потенціал для екологів, але системи штучного інтелекту, які називаються моделями мови мультимодального зору, можуть підвищити ефективність пошуку зображень. Дослідники з Массачусетського технологічного інституту виявили, що великі ММЗ відмінно справляються з простими запитами, але не можуть впоратися з підказками експертного рівня, що вказує на п...
Великі мовні моделі (ВММ) потребують добре підготовлених наборів даних для оптимальної продуктивності. Попередня обробка даних передбачає вилучення тексту з різних джерел і фільтрацію для забезпечення якості за допомогою таких інструментів, як розпізнавання тексту та реґекс-фільтри.
Corvus Robotics використовує автономні дрони для ефективного управління складськими запасами, підвищуючи швидкість і точність роботи. Співзасновник компанії Мохаммед Кабір розробив безпілотну платформу для навігації по складах без GPS, що зробило революцію у відстеженні запасів.
Штучний інтелект перевершує експертів у визначенні нот віскі. ШІ точно прогнозує аромати та походження, вдосконалюючи автоматизований аналіз аромату віскі.
Фріда Поллі, новий запрошений інноваційний науковець Массачусетського технологічного інституту, перейшла від нейронауки до підприємництва, ставши співзасновницею успішної компанії pymetrics, що займається розробкою штучного інтелекту. Робота Поллі призвела до створення закону алгоритмічного упередження, а співпраця з Сендхілом Муллайнатаном - до об'єднання поведінкових наук та комп'ютерних нау...
Дослідники з Массачусетського технологічного інституту розробили SciAgents - фреймворк штучного інтелекту для генерації гіпотез, заснованих на фактах, у біологічно натхненних матеріалах, використовуючи методи міркувань на основі графів. Дослідження, співавторами якого є Аліреза Гафароллахі (Alireza Ghafarollahi) та Маркус Бюлер (Markus Buehler), спрямоване на моделювання колективного інтелекту...
AdaBoost.R2 модифікує AdaBoost для регресії, створюючи послідовність дерев рішень для кращих прогнозів. Зважена медіана підвищує точність, підкреслюючи прогнози дерев з високим ступенем достовірності.
Агентні системи використовують базові моделі для автономної співпраці та ефективного вирішення проблем. AWS впроваджує мультиагентну співпрацю для успішного виконання складних завдань і підвищення продуктивності.