Amazon представляє мультиагентну співпрацю для Amazon Bedrock на AWS re:Invent 2024. Це інноваційне рішення оптимізує управління кластерами EKS завдяки інтелектуальному моніторингу кластерів та автоматизованому усуненню несправностей, що значно скорочує час напрацювання на відмову (MTTR) та час усунення несправностей (MTTI).
Використовуючи генеративний ШІ та великі мовні моделі, постачальники електроенергії можуть оптимізувати управління інвентаризацією активів, автоматично витягуючи дані з етикеток за допомогою комп'ютерного зору. Це інноваційне рішення використовує сервіси AWS, такі як Amazon Bedrock і Claude 3 від Anthropic, щоб спростити процес, дозволяючи технічним фахівцям на місцях легко оновлювати бази дан...
Мультиколінеарність у регресійних моделях може призвести до нестабільних результатів. Коефіцієнт інфляції дисперсії (VIF) допомагає виявити та виміряти цю проблему.
Понад 100 мільйонів людей використовують персоніфікованих чат-ботів для різних цілей - від віртуальних «дружин» до підтримки психічного здоров'я. Чат-боти зі штучним інтелектом трансформують людський зв'язок, імітуючи людську взаємодію завдяки адаптивному навчанню та персоналізованим відповідям.
Document AI, який пропонує Snowflake, поєднує в собі OCR та LLM для ефективного вилучення інформації з цифрових документів. Він з'єднує паперовий і цифровий світи, перетворюючи обробку даних на просту і зручну.
Компанія Clario, лідер у галузі рішень для кінцевих даних для клінічних досліджень, модернізувала генерацію документів за допомогою сервісів штучного інтелекту AWS, щоб оптимізувати робочі процеси. Рішення автоматизує генерацію BRS, скорочуючи трудомісткі ручні завдання та мінімізуючи помилки в документації клінічних досліджень.
AWS пропонує оптимізовані рішення для розгортання великих мовних моделей, таких як Mixtral 8x7B, використовуючи чипи AWS Inferentia та AWS Trainium для високопродуктивного виведення. Дізнайтеся, як розгорнути модель Mixtral на екземплярах AWS Inferentia2 для економічно ефективної генерації тексту.
Похибка калібрування в моделях прогнозування має вирішальне значення. Демонстрація з використанням PyTorch та PSO показує, як її ефективно покращити.
Палата представників штату Техас, контрольована республіканцями, ухвалить закон, що встановлює обмеження для центрів обробки даних, що може затримати плани Трампа щодо інфраструктури штучного інтелекту. Спільне підприємство Stargate побудує 20 дата-центрів для обчислювальних потужностей ШІ, щоб підвищити конкурентоспроможність США проти Китаю.
Девід Салле використовує штучний інтелект на своїх картинах для отримання диких, розлогих результатів. Чи зможе штучний інтелект сказати щось нове про творчість художника?
Nvidia інвестує $500 млрд в інфраструктуру штучного інтелекту в США на тлі загроз Трампа щодо імпорту. Генеральний директор пообідав в Мар-а-Лаго.
Застосування лінійної регресії з двосторонніми взаємодіями значно підвищило точність прогнозування. Модель досягла 83% точності на навчальних даних і 80% на тестових даних, що свідчить про її ефективність.
Створення веб-додатків з інтеграцією генеративного ШІ є складним завданням, але розбиття його на шари, такі як стек ШІ, може допомогти зорієнтуватися в цьому ландшафті. Такі компанії, як OpenAI, використовують різні рівні, співпрацюючи з Microsoft для створення інфраструктури та веб-скребків для даних, щоб забезпечити роботу таких додатків, як ChatGPT.
Генеративний ШІ, як-от Amazon Web Services (AWS), надає можливості перетворення тексту в SQL для ефективнішого дослідження даних. Реалізація в масштабі підприємства з розширеними інструментами обробки помилок підвищує ефективність запитів до бази даних.
Ультраправа ідеологія перетворюється на супрематичний виживання. Рух за корпоративні міста-держави стикається з проблемами, незважаючи на підтримку потужних гравців.