Deb8flow використовує ШІ-агентів, таких як «За» і «Проти», для автономних дебатів, з перевіркою фактів і модерацією в режимі реального часу. Удосконалена архітектура використовує LangGraph та GPT-4o, гарантуючи, що дебати залишаються заснованими на правді.
Колишній дослідник ділиться інсайдами про те, як розпочати проект машинного навчання з правильного визначення проблеми для досягнення успіху. Підкреслює важливість розуміння, пошуку та вирішення бізнес-проблеми, прихованої в наборах даних.
Британський стартап Synthesia співпрацює з Shutterstock, щоб покращити аватарки зі штучним інтелектом, використовуючи стокові кадри. Угода вартістю $2 млрд спрямована на покращення виразу обличчя, тембру голосу та мови тіла аватарів для більш реалістичної взаємодії.
Графічні процесори NVIDIA GeForce RTX 50 серії та RTX PRO на архітектурі Blackwell покращують творчі робочі процеси за допомогою інструментів ШІ в DaVinci Resolve Studio 20. Нові функції ШІ, такі як шумозаглушення UltraNR і магічна маска, спрощують процеси редагування відео та постпродакшну, працюючи швидше на графічних процесорах RTX для підвищення ефективності та продуктивності.
«Чорне дзеркало» переосмислює наукову фантастику за допомогою сучасних алегорій, що формують наш погляд на технології та майбутнє. Кожен епізод віддзеркалює наші колективні тривоги або вводить нові страхи через майстерну розповідь".
Стаття в журналі Microsoft Visual Studio Magazine за квітень 2025 року демонструє лінійну векторну регресію з використанням C# з еволюційним навчанням. Лінійна SVR карає викиди і зберігає значення моделі малими, але простіші методи, такі як L1 і L2 регресія, є більш популярними.
Відкрийте для себе найкращі страви на основі сиру та хліба в Міжнародному валлійському центрі рідкісних страв. Лікар просить забрати плаценту додому, щоб прикрасити її трояндами, розпалюючи цікавість.
Масштабне навчання на прикордонних моделях вимагає значних обчислень, а збої в роботі обладнання заважають просуванню вперед. Amazon SageMaker HyperPod мінімізує збої, підвищує ефективність та зменшує витрати на навчання.
Amazon Q Business пропонує допомогу на основі штучного інтелекту для підвищення ефективності роботи персоналу за рахунок скорочення часу, витраченого на виконання завдань. Завдяки надійним функціям безпеки та детальній аналітиці організації можуть вимірювати підвищення продуктивності та оптимізувати використання для досягнення максимального ефекту.
Агенти Amazon Bedrock Agents спрощують розробку додатків для генеративного ШІ, розбиваючи завдання на частини та використовуючи FM. Взаємодія з людиною в циклі забезпечує безпечну та ефективну роботу агентів, а для валідації використовуються HITL-патерни.
Amazon, Google і Microsoft за підтримки Трампа будують водомісткі центри обробки даних у посушливих регіонах по всьому світу. Плани будівництва сотень нових об'єктів викликають занепокоєння щодо загострення дефіциту води для постраждалого населення.
Організації застосовують мульти-LLM-підхід до генеративних додатків ШІ, що дозволяє створювати більш універсальні та ефективні моделі, пристосовані до конкретних завдань і вимог. Впровадження ефективної мульти-LLM-маршрутизації є ключем до спрямування підказок користувача до потрібного LLM для різноманітних випадків використання, від генерації тексту до складного аналізу, в різних галузях знань.
Дослідники Массачусетського технологічного інституту та лабораторії штучного інтелекту MIT-IBM Watson AI Lab розробляють революційний мультимодальний підхід з використанням великих мовних моделей та графових моделей для оптимізації дизайну молекул, що дозволяє підвищити рівень успішності з 5% до 35%. Ця інноваційна методика може автоматизувати весь процес проектування та синтезу молекул, що по...
Catboost представляє новий метод обчислення цільової статистики для категоріальних змінних, що дозволяє уникнути таких проблем, як розрідженість і проблеми з пам'яттю. Замінюючи одномоментне кодування на згладжене середнє, Catboost надає практичне рішення для реальних задач.
Потреба в енергії для центрів обробки даних зі штучним інтелектом зросте в чотири рази до 2030 року
МЕА прогнозує різке зростання енергетичних потреб ШІ, але применшує вплив на клімат. До 2030 року обробка даних для ШІ в США може перевищити споживання енергії у важкій промисловості.