Технооптимізм знову в моді серед мільярдерів, але чи можуть ліві запропонувати власне бачення майбутнього? У 2022 році вірусним став маніфест про максимальне прискорення технологічного прогресу, який пророкує наступну еволюцію свідомості.
RAG і Fine-Tuning - це два методи вдосконалення великих мовних моделей, таких як ChatGPT і Gemini, що дозволяють отримати доступ до зовнішніх джерел знань для пошуку актуальної інформації без перенавчання. RAG покращує вхідні дані шляхом отримання зовнішніх даних, тоді як Fine-Tuning адаптує модель до конкретних вимог, революціонізуючи можливості LLM для різних застосувань.
Ентузіасти експериментують зі штучним інтелектом для відтворення класичних аркадних ігор, але результати неоднозначні. Чат-бот Grok від Microsoft, Google та xAI дає змогу створювати віртуальні світи та клони старих аркадних ігор, як-от репліка Pac-Man.
FloTorch порівняв моделі Amazon Nova з GPT-4o від OpenAI і виявив, що Amazon Nova Pro швидший і економічно ефективніший. Amazon Nova Micro та Amazon Nova Lite також перевершили GPT-4o-mini за точністю та доступністю.
Регресія опорних векторів (SVR) з лінійним ядром карає викиди більше, ніж близькі точки даних, що контролюються параметрами C та епсилон. SVR, хоч і складна, але дає результати, подібні до звичайної лінійної регресії, що робить її менш практичною для лінійних даних.
Octus трансформує кредитний аналіз за допомогою чат-бота CreditAI на основі штучного інтелекту, пропонуючи миттєву інформацію про тисячі компаній. Octus переніс CreditAI на Amazon Bedrock, підвищивши продуктивність і масштабованість, зберігаючи при цьому нульовий час простою.
Моделі DeepSeek-R1 на Amazon Bedrock Marketplace демонструють вражаючу продуктивність у математичних тестах. Оптимізуйте моделі мислення за допомогою швидкої оптимізації на Amazon Bedrock для отримання більш лаконічних слідів мислення.
GPT-3 викликав інтерес до великих мовних моделей (LLM), таких як ChatGPT. Дізнайтеся, як LLM обробляють текст за допомогою токенізації та нейронних мереж.
Демонструє еволюційне навчання лінійної регресії за допомогою C#. Використовує нейронну мережу для генерації синтетичних даних. Еволюційний алгоритм перевершує традиційні методи навчання за точністю.
Microsoft і Google представили нові моделі штучного інтелекту, що імітують світи відеоігор, а інструмент Muse від Microsoft обіцяє революціонізувати розробку ігор, дозволивши дизайнерам експериментувати зі згенерованими штучним інтелектом ігровими відеороликами, заснованими на реальних ігрових даних з Ninja Theory's Bleeding Edge.
ШІ важко розрізняти схожі породи собак через переплутані ознаки. PawMatchAI використовує унікальний екстрактор морфологічних ознак, щоб імітувати те, як люди-експерти розпізнають породи, зосереджуючись на структурованих ознаках.
Структура команди з обробки даних має вирішальне значення для ефективного використання даних та штучного інтелекту. Централізовані команди можуть стати вузькими місцями без належної інтеграції експертизи домену.
Дослідники борються з хибною регресією в аналізі часових рядів - критично важливою проблемою, яку часто ігнорують, але яка має реальні наслідки. Розуміння цієї концепції є життєво важливим для економістів, дослідників даних та аналітиків, щоб уникнути хибних висновків у своїх моделях.
LettuceDetect, легкий детектор галюцинацій для трубопроводів RAG, перевершує попередні моделі, пропонуючи ефективність і доступність з відкритим вихідним кодом. Великі мовні моделі стикаються з проблемами галюцинацій, але LettuceDetect допомагає виявляти і усувати неточності, підвищуючи надійність у критичних областях.
Автономні цифрові помічники, такі як Operator від OpenAI, тепер можуть замовляти продукти для користувачів, але контроль має вирішальне значення. АІ-агент може переміщатися по веб-сайтах і виконувати завдання, пропонуючи новий рівень зручності та інтриги.