Amazon DataZone дозволяє організаціям впроваджувати управління даними в масштабах, просуваючи аналітику самообслуговування та інноваційні проекти з протидії відмиванню грошей. Фінансові установи можуть використовувати Amazon DataZone для ефективних маркетингових кампаній, забезпечуючи безпечний доступ до наборів даних клієнтів.
Нові технології, такі як генеративний ШІ, стикаються з такими ж проблемами, як і попередні. Прогрес досягається маленькими кроками, як сходження на Еверест.
Amazon Bedrock пропонує найкращі FM від провідних AI-компаній через єдиний API для безпечного створення генеративних AI-додатків. Користувачі можуть налаштовувати FM, інтегрувати з сервісами AWS та розгортати агентів без керування інфраструктурою.
Amazon Bedrock Flows спрощує розробку генеративних робочих процесів зі штучним інтелектом без коду. Thomson Reuters і Dentsu Creative високо оцінили його гнучкість і підвищення продуктивності.
Дебати LLM використовують синтетичні базові дані для навчання більш потужних мовних моделей, що перевершує існуючі методи. Amazon Bedrock полегшує використання різних методів LLM для покращення узгодженості фактів у процесах прийняття рішень.
Amazon Bedrock пропонує високопродуктивні моделі штучного інтелекту від провідних компаній, таких як AI21 Labs і Meta, через єдиний API. Пакетний висновок в Amazon Bedrock дозволяє економічно ефективно обробляти великі обсяги даних з дотриманням етичних норм штучного інтелекту.
Массачусетський технологічний інститут, Google та Університет Пердью розробляють технологію Tree-D Fusion, яка об'єднує штучний інтелект та моделі росту дерев для створення 3D-моделей міських дерев. Можливості прогнозування можуть зробити революцію в управлінні міськими лісами завдяки проактивному плануванню адаптації до зміни клімату.
Генеративні моделі штучного інтелекту покращують мультимедійний контент за допомогою сегментації аудіо- та відеоматеріалів. Amazon SageMaker Ground Truth покращує навчання, уможливлюючи детальні робочі процеси людських анотацій для точної сегментації.
Налаштуйте модель Meta Llama2-7B на наукові питання за допомогою автопілота Amazon SageMaker для отримання більш точних результатів. Використовуйте AutoMLV2 SDK для автоматизації тонкого налаштування та оцінки моделі в різних галузях, таких як охорона здоров'я та освіта.
Каплиця Петра в Люцерні замінила священика на штучного Ісуса, який розмовляє 100 мовами. Теолог Марко Шмід називає це експериментом, щоб виміряти суспільний інтерес і реакцію.
Короткий зміст: У випуску журналу Microsoft Visual Studio Magazine за листопад 2024 року наведено демонстрацію k-NN регресії з використанням мови C#, відомої своєю простотою та інтерпретованістю. Метод прогнозує числові значення на основі найближчих навчальних даних, а демонстрація демонструє точність і процес прогнозування.
Розробка CNN для задач перевірки автомобільної електроніки з використанням PyTorch. Вивчення згорткових шарів і того, як ШНМ приймають рішення при візуальному огляді.
Запропонований малоресурсний метод пояснення для LLM з використанням підходу на основі подібності. Модельно-діагностичний, швидкий і прозорий, доступний на Github.
3D конфігуратори продуктів революціонізують галузі завдяки інтерактивним візуалізаціям. NVIDIA Omniverse Blueprint дозволяє створювати контент для маркетингу на основі ШІ.
LangGraph і Tavily використовуються для створення дослідницького агента з LLM для узагальнення тексту. Система автономно генерує звіти та інтегрується з Google Docs для легкого редагування та організації.