Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Темна сторона аутсорсингу цифрової праці

Технологічні компанії закликали інвестувати в працівників, які фільтрують дані соціальних мереж для ШІ, і поважати їх. Рішення Meta замінити фактчекінг коментарями спільноти розкритикувала Соня Кгомо на AI Action Summit у Парижі.

Підвищіть швидкість LLM-виведення за допомогою Medusa-1 на SageMaker

LLM революціонізують обробку природної мови, але стикаються з проблемами затримок. Фреймворк Medusa прискорює виведення LLM, передбачаючи кілька токенів одночасно, досягаючи прискорення в 2 рази без втрати якості.

Гаррісон Форд привертає увагу до проблеми штучного інтелекту у відеоіграх

З липня актори озвучення в SAG-AFTRA страйкують через використання штучного інтелекту у відеоіграх. У суперечці беруть участь такі великі видавці, як Activision Blizzard і Disney, що вплинуло на останні ігри, такі як Destiny 2 і Genshin Impact.

Віртуалізація та контейнери для початківців у науці про дані

Віртуалізація дозволяє запускати кілька віртуальних машин на одному фізичному комп'ютері, що має вирішальне значення для хмарних сервісів. Від мейнфреймів до безсерверних хмарних обчислень хмарні технології значно еволюціонували, впливаючи на нашу повсякденну цифрову взаємодію.

Опанування змінних оточення за допомогою Pydantic

Розробники використовують Pydantic для безпечної роботи зі змінними середовища, зберігаючи їх у файлі .env та завантажуючи за допомогою python-dotenv. Цей метод гарантує, що конфіденційні дані залишаються приватними і спрощує налаштування проекту для інших розробників.

Забезпечення точності: Оцінювання відповідей великих мовних моделей

Великі мовні моделі (ВММ) передбачають слова в послідовності, виконуючи такі завдання, як узагальнення тексту та генерація коду. Галюцинації у результатах LLM можна мінімізувати за допомогою методів генерації пошукових доповнень (Retrieval Augment Generation, RAG), але оцінка достовірності має вирішальне значення.

Google захистив суперечливе рішення на загальних зборах колективу

На нещодавніх зборах керівники Google оголосили про плани покласти край ініціативам щодо різноманітності та відкликати обіцянку не використовувати штучний інтелект на озброєнні. Рішення компанії оновити навчальні програми та брати участь у геополітичних дискусіях викликало суперечки серед працівників.

Розкриття можливостей LLM в оцінці моделі Amazon Bedrock

Amazon Bedrock представляє програму LLM-as-a-judge для оцінки моделей штучного інтелекту, пропонуючи автоматизовану, економічно ефективну оцінку за кількома показниками. Ця інноваційна функція спрощує процес оцінювання, підвищуючи надійність та ефективність ШІ для прийняття обґрунтованих рішень.

Вивільнення сили законів масштабування в ШІ

Закони масштабування ШІ описують, як різні способи застосування обчислень впливають на продуктивність моделі, що призводить до вдосконалення моделей міркувань ШІ та прискорення попиту на обчислення. Масштабування перед навчанням показує, що збільшення даних, розміру моделі та обчислень покращує продуктивність моделі, стимулюючи інновації в архітектурі моделі та навчання майбутніх потужних моде...

Спростіть інтеграцію корпоративних знань з Amazon Q Business

Amazon Q Business - це асистент на основі штучного інтелекту, який спрощує великомасштабну інтеграцію даних для підприємств, підвищуючи ефективність та якість обслуговування клієнтів. AWS Support Engineering успішно впровадила Amazon Q Business для автоматизації обробки даних, забезпечуючи швидкі та точні відповіді на запити клієнтів.

Велика Британія та США пропустили декларацію про безпеку штучного інтелекту на Паризькому саміті

Джей Ді Венс обговорює величезний потенціал ШІ для економічних інновацій та національної безпеки, наголошуючи на необхідності дерегуляції для його швидкого розвитку. Він підкреслює важливість використання можливостей штучного інтелекту та потенціалу технології для створення робочих місць і розвитку суспільства.

Освоюємо регресію в машинному навчанні: Порівняння найкращих методів

Основні методи регресії: лінійний, k-найближчих сусідів, ядрового хребта, гауссового хребта, нейронної мережі, випадкового лісу, AdaBoost та градієнтного бустингу. Ефективність кожного методу залежить від розміру та складності набору даних.