Розробка моделей машинного навчання схожа на випічку - невеликі зміни можуть мати великий вплив. Відстеження експерименту має вирішальне значення для відстеження входів і виходів, щоб знайти найефективнішу конфігурацію. Організація та ведення журналу експериментів з машинного навчання допомагає не втратити з поля зору те, що працює, а що ні.
Відкрийте для себе можливості передбачення майбутнього за допомогою аналізу часових рядів та прогнозування. Дізнайтеся, як аналізувати тенденції даних і робити точні прогнози за допомогою Python та статистичних моделей.
Магістерські програми дають змогу отримати найсучасніші результати з мінімальною кількістю даних. Amazon SageMaker JumpStart спрощує точне налаштування та розгортання моделей для завдань НЛП.
Мета досліджує федеративне навчання з диференційованою конфіденційністю для підвищення конфіденційності користувачів шляхом навчання ML-моделей на мобільних пристроях, додаючи шум для запобігання запам'ятовуванню даних. Виклики включають балансування міток і повільне навчання, але нова системна архітектура Meta спрямована на вирішення цих проблем, дозволяючи масштабувати і ефективно навчати мо...
Graph Maker - це бібліотека Python, що використовує Llama3 та Mixtral для побудови графів знань з тексту. Бібліотека спрямована на вирішення проблем і була добре сприйнята, завдяки зв'язкам з дослідженнями MIT.
Microsoft представила штучний інтелект на базі GPT-4 для американських спецслужб, що забезпечує безпечний аналіз і взаємодію з чат-ботами. Модель штучного інтелекту вирішує проблеми безпеки даних, але чиновники повинні остерігатися потенційних зловживань через обмеження ШІ.
Фахівець доктор Каріна Поповічі використовує штучний інтелект, щоб ідентифікувати до 40 підроблених картин на eBay, включаючи «Моне» і «Ренуара». Передова технологія показує шокуючі результати в автентифікації творів мистецтва.
Такі терміни, як одномоментне навчання, навчання з кількох спроб, навчання з нуля і точне налаштування в ШІ, мають різні визначення. Методи включають сіамські мережі, модельне агностичне метанавчання та використання допоміжних даних для класифікації.
Регресія часових рядів є складним завданням, для вирішення якого існують різні методи. Нещодавні дослідження вивчають використання нейронних мереж, таких як трансформатори, для підвищення точності прогнозування.
Джонатан Раган-Келлі з Массачусетського технологічного інституту є піонером у створенні ефективних мов програмування для складних апаратних засобів, що трансформують програми для редагування фотографій та штучного інтелекту. Його робота зосереджена на оптимізації програм для спеціалізованих обчислювальних блоків, що дозволяє досягти максимальної обчислювальної продуктивності та ефективності.
Стенфордський НЛП впроваджує DSPy для розробки підказок, переходячи від ручного написання підказок до модульного програмування. Новий підхід має на меті оптимізувати підказки для LLM, підвищуючи надійність та ефективність.
Нова програма зі штучного інтелекту допомагає створювати кращі плани підтримки людей з інвалідністю, щоб зменшити обмеження та ізоляцію людей з інвалідністю. Програма «Просування практики підтримки позитивної поведінки» має на меті допомогти особам, які здійснюють догляд та підтримку, з повагою та конструктивно реагувати на складну поведінку.
Відомий дослідник ШІ Андрій Карпатій пропонує модифікувати ChatGPT для космічного зв'язку, що викликає інтерес у цій галузі. Впливовий профіль Карпаті та інноваційний проект "llm.c" демонструють спрощені процеси навчання на ступінь магістра права.
Студенти MechE демонструють інноваційні роботи в галузі робототехніки, біоінженерії та сталої енергетики. Від демократизації дизайну за допомогою генеративного штучного інтелекту до захисту морського життя та отримання води з повітря - майбутнє машинобудування безмежне.
Головний тренер збірної Джон Льюїс дякує штучному інтелекту за допомогу в розіграші Кубка світу з футболу, використовуючи технологію для прийняття рішень щодо складу та командного балансу. Лондонська компанія PSi допомагає у відборі до жіночої збірної Англії, покращуючи ігрові поєдинки.