Formula 1® (F1) співпрацює з Amazon Web Services (AWS) для розробки рішення на основі штучного інтелекту для швидшого вирішення проблем під час прямих трансляцій, скорочуючи час сортування до 86%. Спеціально створений асистент аналізу першопричин (RCA) дає змогу інженерам знаходити та вирішувати критичні проблеми протягом 3 днів, підвищуючи операційну ефективність.
Короткий зміст: Дізнайтеся, як будуються та навчаються великі мовні моделі (ВММ), демістифікуючи цей процес. Вивчіть попереднє навчання, токенізацію та навчання нейронних мереж у GPT4.
Безпека велосипедистів викликає все більше занепокоєння через небезпечні зіткнення з транспортними засобами. Рішення машинного навчання з використанням Amazon Rekognition допомагає велосипедистам виявляти небезпечні ситуації та сприяти підвищенню безпеки на дорогах.
Дізнайтеся, як використовувати підказки штучного інтелекту та LLM для семантичної кластеризації повідомлень на форумах користувачів швидше та з меншими зусиллями. Натхненний Clio, цей підручник використовує загальнодоступні повідомлення Discord для аналізу розмов про технічну допомогу.
Пуассонівська регресія прогнозує числові значення для даних підрахунку за допомогою спеціальних методів і математичних припущень. У демонстраційному прикладі з використанням C# було створено синтетичні дані Пуассона і досягнуто високої точності за допомогою однієї константи та коефіцієнтів.
Технологічні гіганти, такі як Microsoft, Alphabet, Amazon і Meta, інвестують значні кошти в ШІ, що нагадує «пластмасу» у фільмі «Випускник». Прагнення до інтелекту людського рівня ставиться під сумнів заради більш практичних досягнень.
Поділіться своїм досвідом впливу штучного інтелекту на роботу, щоб дослідити поточний і майбутній вплив технології на роботу. Сприяйте розумінню позитивного, негативного або змішаного впливу штучного інтелекту на робочі ролі.
Експерти розділилися в думках щодо майбутніх технологічних загроз та нинішніх небезпек. Марія Ресса попереджає про негативний вплив великих технологій на суспільство.
Такі досягнення в науці про дані, як Transformer, ChatGPT та RAG, змінюють технології. Розуміння еволюції НЛП є ключовим для науковців-початківців.
Проблеми бінарної класифікації можуть бути складними для інтерпретації через неоднозначність матриці плутанини, де визначення TP, TN, FP і FN можуть відрізнятися. Розуміння цих термінів має вирішальне значення для точного аналізу. Будьте обережні при інтерпретації матриць розбіжностей, щоб уникнути плутанини в результатах машинного навчання.
Причинно-наслідкові міркування можуть розкрити взаємозв'язки в даних, уникаючи неправильної інтерпретації. Розуміння історії, що стоїть за даними, має вирішальне значення для кращого аналізу.
Інженер з машинного навчання розповідає про свій шлях від студента-фізика до фахівця з аналізу даних, який отримав першу роль після подачі заявок на 300+ вакансій. Зацікавився штучним інтелектом після перегляду документального фільму AlphaGo від DeepMind, який підкреслює важливість наполегливої праці та завзятості.
Ерік Шмідт попереджає, що ШІ може бути використаний державами-ізгоями, такими як Північна Корея, Іран чи Росія, для завдання шкоди невинним людям. Колишній генеральний директор Google побоюється, що технологія може бути використана для створення небезпечної зброї, включаючи біологічні атаки.
Резюме: Створення ефективних наборів даних зображень для проектів класифікації зображень передбачає встановлення відсікання зображень, довірчих порогів та використання поетапних/синтетичних даних для покращення продуктивності моделі. Досягнення балансу між занадто малою та занадто великою кількістю зображень у класі має вирішальне значення для оптимальних результатів навчання.
Віце-президент США розкритикував європейське регулювання на саміті AI Action Summit у Парижі, застерігаючи від співпраці з Китаєм. Еммануель Макрон визнає руйнівний потенціал ШІ за допомогою глибокого фейкового монтажу, підкреслюючи глобальну напруженість.