Короткий зміст: Розподіл Пуассона пояснюється простими словами, з прикладами та ключовими поняттями. Генерування синтетичних пуассонівських даних для машинного навчання спрощується за допомогою рівнянь.
Міністр технологій Великобританії попереджає, що західні країни повинні очолити гонку ШІ, і натякає на зростаючий вплив Китаю через DeepSeek. Американські інвестори збентежені, оскільки домінування Кремнієвої долини в галузі ШІ було поставлено під сумнів на глобальному саміті в Парижі.
Джей Бернард, поет, лауреат багатьох нагород, використовує штучний інтелект у проекті The Last X Years, щоб виявити маніпуляції з якісними даними в розмовах про Brexit, роблячи невидимі процеси видимими. Використовуючи TensorFlow від Google, проект пов'язує заголовки новин та інтерв'ю, проливаючи світло на маніпуляції з демократією в цифрову епоху.
Зростання ролі штучного інтелекту в юридичній сфері викликає занепокоєння, оскільки суди побоюються його використання при написанні юридичних документів і цитуванні судових справ. Використання адвокатом ChatGPT для написання резюме справи призвело до неіснуючих посилань, що підкреслює потенційні ризики використання ШІ в юридичній роботі.
Штучний інтелект загрожує творчості в письменницькій індустрії, Гільдія авторів планує створити знак довіри до книг, написаних людиною. Автор тестує ШІ на ефективність написання роману в сиквелі трилера «Задзеркалля».
Каймінг Хе з Массачусетського технологічного інституту бачить, як ШІ руйнує стіни між науковими дисциплінами, створюючи спільну мову для прогресу та співпраці. Від AlphaFold до ChatGPT, інструменти ШІ сприяють прогресу в різних галузях, таких як прогнозування структури білків та обробка природної мови.
A/B-тести порівнюють лікування А і лікування Б для кампаній, щоб визначити, яке з них приносить більший дохід на покупця. Маркетологи аналізують частоту покупок і середню суму замовлення, щоб ефективно оптимізувати кампанії.
Команди, що займаються наукою про дані, стикаються з проблемами при переході від моделей до виробництва, але багатоакаунтна платформа ML вирішує ці проблеми. Такі ролі, як провідний аналітик даних, аналітики даних, інженери ML та керівники, працюють разом, щоб оптимізувати життєвий цикл ML, забезпечуючи безпеку та ефективність.
Білки, створені за допомогою штучного інтелекту, нейтралізують смертельну зміїну отруту швидше, дешевше та ефективніше, ніж традиційні протиотрути. Цей прорив дає надію на доступне лікування, яке врятує мільйони життів і засобів до існування в сільських громадах по всьому світу.
Нещодавній відкритий лист піднімає моральні питання щодо свідомості ШІ. Важко визначити, чи є ШІ справді свідомим, чи лише імітує його. Дискусія вимагає обережного, агностичного підходу.
AWS пропонує стартові набори, розгорнуті рішення, які вирішують поширені бізнес-проблеми, оптимізуючи витрати та заощаджуючи час. Amazon Q Business - це асистент на основі штучного інтелекту, який дає змогу працівникам бути більш креативними, ефективними та продуктивними.
LLM-додатки вимагають навмисного налаштування температури для контролю випадковості. Значення температури впливають на результати моделі, роблячи їх більш випадковими або цілеспрямованими. Функція Softmax перетворює необроблені результати в чистий розподіл ймовірностей для точних прогнозів.
Дослідники з Массачусетського технологічного інституту виявили недоліки в традиційних методах перевірки просторових прогнозів, що призводять до неточних прогнозів. Вони розробили нову методику, яка перевершила загальноприйняті методи прогнозування погоди та якості повітря, пропонуючи більш надійні оцінки для різних застосувань.
Обробка звуку спирається на статистичні моделі, такі як модель гауссової суміші (GMM), для класифікації та імітації фонового шуму в різних середовищах, що допомагає в розробці DSP-рішень для придушення перешкод і покращення якості звуку. Розподіли GMM з різною ймовірністю точно представляють різні джерела шуму, що має вирішальне значення для практичних аудіосистем.
Модель R1 від DeepSeek отримала високу оцінку за продуктивність і вартість, спричинивши потенційні зміни в ландшафті LLM. Розуміння еталонних показників LLM є ключем до подолання хайпу та створення конкретних еталонних показників для конкретних сценаріїв використання.