Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Революція в робототехніці: OpenUSD та синтетичні дані

Людиноподібні роботи, навчені на NVIDIA Isaac GR00T з використанням синтетичних даних з OpenUSD, роблять революцію в робототехніці. NVIDIA Omniverse спрощує навчання завдяки генерації великомасштабних даних про рух та навчанню на основі симуляції.

Автономність ШІ: 27 днів самокодування

27 днів, 1700+ комітів, 99,9% коду, згенерованого штучним інтелектом: Експеримент розробника з інструментами Agentic Ai виявляє проблеми та обмеження у створенні ObjectiveScope без прямих змін у коді. Технічні обмеження та проблеми з інтеграцією підкреслюють складність розробки з використанням ШІ, яка виходить за рамки маркетингового хайпу.

Максимізація ефективності часової розвідки DAX

Зануртеся в розширені обчислення Time Intelligence в Power BI з акцентом на ефективність і продуктивність. Дізнайтеся, як обробляти екзотичні сценарії, такі як високосні роки та фінансовий тиждень з початку року, за допомогою функцій DAX і розширеної таблиці дат.

Вдосконалення фінансових послуг за допомогою автоматизованої логіки для Amazon Bedrock Guardrains

Фундаментальні моделі (ФМ) та генеративний ШІ змінюють такі фінансові установи, як NASDAQ та Державний банк Індії. AWS впроваджує автоматизовану перевірку логіки для прозорих, детермінованих застосувань ФМ у регульованих галузях.

Контейнеризуйте свої навички з науки про дані

Data scientists можуть скористатися перевагами використання контейнерів для забезпечення стабільності та масштабованості моделей машинного навчання та конвеєрів даних. Контейнери є більш гнучкими, ніж віртуальні машини, оскільки використовують операційну систему хоста для більш швидкого, портативного та ресурсоефективного виконання.

Освоєння управління Amazon SageMaker HyperPod

Amazon запустив SageMaker HyperPod на Amazon EKS, що дозволяє ефективно розробляти генеративний ШІ за допомогою спільних прискорених обчислень. Адміністратори можуть керувати розподілом завдань, визначати пріоритети проектів та оптимізувати використання ресурсів для швидшого впровадження інновацій.

Як стати науковцем з даних

Проекти з науки про дані зараз націлені на виробництво, що вимагає високоякісного коду. UV, сучасний менеджер проектів на Python, спрощує управління залежностями, віртуальними середовищами та організацію проектів, стверджуючи, що він у 10-100 разів швидший за традиційні інструменти.

Закон ЄС про штучний інтелект: Виявлено лазівку в авторському праві

Архітектор закону ЄС про авторське право критикує Акт про штучний інтелект за надання переваги великим технологіям над європейськими креативами. Культурні організації попереджають, що проект правил послаблює захист авторських прав, роблячи письменників і музикантів вразливими.

Виявлення рушійних сил хвороб: Картування метаболітів за допомогою MIT Spinout

Платформа ReviveMed вимірює метаболіти, щоб зрозуміти фактори розвитку хвороби та реакцію на лікування, заповнюючи прогалину в аналізі даних про метаболіти. Компанія співпрацює з фармацевтичними гігантами і пропонує дослідникам безкоштовне програмне забезпечення, яке дозволяє отримувати інформацію з невикористаних даних про метаболіти.

Узагальнені міркування: Великі мовні моделі та людський мозок

Сучасні моделі великих мов обробляють різноманітні дані подібно до семантичного центру людського мозку, вважають дослідники з Массачусетського технологічного інституту (MIT). Отримані висновки можуть призвести до вдосконалення майбутніх моделей для роботи з різними мовами та завданнями.

Grok-3: остання інновація чат-бота зі штучним інтелектом від Ілона Маска

Компанія Ілона Маска xAI представила чат-бота Grok-3, який конкуруватиме з DeepSeek, OpenAI та Google Gemini у гонці озброєнь ШІ. «Максимально правдивий» бот Маска має на меті конкурувати з гігантами індустрії на тлі широкомасштабних проблем з впровадженням.

81 млн фунтів стерлінгів запускає систему попередження кліматичних критичних точок

Британський проект використовує дрони, виявлення космічних променів та штучний інтелект для прогнозування кліматичних критичних точок. Aria виділяє 81 млн фунтів стерлінгів командам, які шукають ранні сигнали кліматичних катастроф.