Значення SHAP мають на меті справедливо розподілити внески ознак у прогнози ML. Наближення ядра SHAP може призвести до хибних результатів, особливо з корельованими предикторами.
Автор реалізує логістичну регресійну модель з використанням еволюційної оптимізації на мові C# на наборі даних для аутентифікації банкнот, досягаючи високої точності на тестових даних. Процес еволюційної оптимізації включає створення популяції можливих рішень та мутацію для пошуку найкращих ваг та зміщення для моделі.
Дерева рішень можуть бути більш точними та інтерпретованими за допомогою нової техніки, що підвищує їхню ефективність. Дослідження інтерпретованого ШІ зосереджені на тому, щоб зробити дерева рішень більш ефективними і точними при менших розмірах.
Google DeepMind представив робота-гравця в настільний теніс зі штучним інтелектом, який демонструє потенціал машин у виконанні складних фізичних завдань. Система під назвою "AlphaPong" виграє 45% матчів у людей, що є важливою віхою в навчанні та управлінні роботами.
Twilio співпрацює з AWS для розробки віртуального помічника для аналітиків даних, використовуючи Amazon Bedrock та RAG для дослідження даних на основі природної мови. Інструмент AskData від Twilio економить час, перетворюючи запитання користувачів на SQL-запити, підвищуючи ефективність і простоту використання для аналітиків даних.
Британський регулятор перевіряє $4 млрд інвестицій Amazon в стартап Anthropic зі штучного інтелекту
Британське антимонопольне відомство перевірить інвестиції Amazon у розмірі $4 млрд в компанію Anthropic, що є частиною серії розслідувань щодо технологічних зв'язків. Розпочато попереднє розслідування з метою визначення необхідності поглибленої перевірки з боку антимонопольного відомства.
Короткий зміст статті: Дізнайтеся, як використовувати LightGBM для виявлення аномалій шляхом нормалізації та кодування даних, створення автокодера з декількома модулями регресії для прогнозування вхідних векторів та виявлення аномалій для аналізу помилок реконструкції. Залучення вчителів математики надихнуло на кар'єру в математиці та комп'ютерних науках, а вигадані персонажі-професори з класи...
Дімітріс Берцімас, призначений проректором з відкритого навчання в Массачусетському технологічному інституті, має на меті трансформувати навчання за допомогою цифрових технологій у всьому світі. Берцімас, відомий професор у галузі оптимізації та машинного навчання, керуватиме різноманітними продуктами MIT Open Learning.
Дослідники з Массачусетського технологічного інституту розробили алгоритм EES, який дозволяє роботам самостійно тренуватися та вдосконалювати навички. Протестований на роботі Spot від Boston Dynamics, EES показав швидкий прогрес у виконанні таких завдань, як маніпуляції та підмітання.
Керівники компаній повинні брати на себе відповідальність за результати продуктів ШІ, а не звинувачувати розробників. Практичний підхід, що має вирішальне значення для успішних моделей ШІ, вимагає більше зусиль і розуміння.
Чат-боти та віртуальні асистенти зі штучним інтелектом використовують великі мовні моделі (LLM) з компонентами пам'яті для покращення взаємодії з клієнтами та оптимізації бізнес-процесів. Методи розширеного пошуку (RAG) та переранжування покращують відповіді чат-ботів, залучаючи зовнішні знання для більш релевантної та обізнаної взаємодії.
Ключові фігури в OpenAI, включаючи президента Грега Брокмана, беруть відпустки або переходять в конкуруючу Anthropic, що ставить під сумнів прогрес компанії на шляху до ШІ. Ці рішення викликають припущення про близькість прориву в області ШІ, оскільки високопоставлені співробітники залишають компанію, що займається розробкою ChatGPT.
Штучний інтелект викликає паніку, але реальна загроза піддається хайпу. ChatGPT від OpenAI наближає ШІ до інтелекту, відкриваючи шлях до трансформаційних суспільних змін.
Інвестори стикаються з наслідками, коли бульбашка АІ лускає, мільярди втрачаються на падінні фондового ринку технологій. Чат-бот ChatGPT від OpenAI досягнув 100 мільйонів користувачів за два місяці, що спричинило бум і статус єдинорога для 200+ стартапів у сфері ШІ.
Polars кидає виклик пандам в обробці даних на Python з чудовою продуктивністю, використовуючи Rust для паралельної обробки. Потенційно Polars може перевершити панди у 25 разів, але потребує більше vCPU для досягнення оптимальної швидкості.