GenAI користується високим попитом, але створення моделі, яка підвищує цінність бізнесу, є складним завданням. Швидка інтеграція не вирішить проблему, а диференціація є ключовим фактором. Високоякісні власні дані - це диференціатор успіху GenAI.
Дізнайтеся, як досягти ефективності параметрів при точному налаштуванні за допомогою LoRA, включаючи стратегії адаптації лінійних модулів та оптимізації швидкості навчання. У цій статті розглядаються свідомі дизайнерські рішення, які можуть покращити продуктивність моделі, використання пам'яті графічного процесора та швидкість навчання, пропонуючи більш глибоке розуміння та більший контроль.
Педро Соарес (Pedro Soares), він же Blendeered, демонструє свою приголомшливу новорічну анімацію на тему NVIDIA, підкреслюючи силу технологічних інновацій та вплив NVIDIA Studio на створення контенту. Використовуючи Blender і графічний процесор NVIDIA GeForce RTX 4090, Blendeered створює футуристичну міську сцену з рендерингом у реальному часі, трасуванням променів OptiX і інструментами на осн...
У статті обговорюється зростаючий розрив між клінічною практикою і дослідженнями ШІ в охороні здоров'я, підкреслюється недостатня участь і співпраця клініцистів. Вона підкреслює необхідність практичного підходу до виявлення актуальних проблем і оцінки того, чи може ШІ розробити кращі рішення в охороні здоров'я.
Експериментатори зі штучного інтелекту швидко скористалися трьома ранніми мультфільмами про Міккі Мауса, які стали суспільним надбанням у США, використовуючи модель ШІ, навчену на цих мультфільмах, для створення нових нерухомих зображень Міккі Мауса, Мінні Маус і Кривоногого Піта. Хоча результати іноді спотворені, цей ранній експеримент демонструє потенціал інтеграції персонажів суспільного на...
Підвищуйте продуктивність контрольованих моделей, використовуючи навчання з підкріпленням на основі зворотного зв'язку з людиною (RLHF) для усунення упереджень і токсичності. NeuralHermes-2.5, налаштований за допомогою прямої оптимізації переваг (DPO), значно покращує показники базової моделі в рейтингу Open LLM Leaderboard.
Нещодавнє дослідження вивчає, як дерева рішень і випадкові ліси, що широко використовуються в машинному навчанні, страждають від упередженості через припущення про безперервність ознак. У дослідженні пропонуються прості методи для зменшення цієї похибки, а результати показують погіршення продуктивності на 0,2 відсоткових пункти, коли атрибути відображаються дзеркально.
Відкриваємо правду: тестування показників ефективності машинного навчання за допомогою mlscorecheck
У статті розглядається, як за допомогою пакета Python mlscorecheck можна перевірити відповідність результатів машинного навчання та експериментальних налаштувань. Пакет mlscorecheck надає чисельні методи для визначення того, чи можуть отримані результати бути результатом заявленого експерименту.
2024 рік може стати переломним для музичного ШІ завдяки проривам у перетворенні тексту на музику, музичному пошуку та чат-ботам. Однак ця сфера все ще відстає від мовленнєвого ШІ, і для того, щоб революціонізувати музичну взаємодію за допомогою ШІ, необхідний прогрес у гнучкому і природному розділенні джерел.
У цій статті досліджуються методи прискорення в нейронних мережах, підкреслюється необхідність швидшого навчання через складність моделей глибокого навчання. Вона вводить поняття градієнтного спуску та висвітлює обмеження його повільної швидкості збіжності. Потім у статті представлено алгоритм оптимізації Momentum, який використовує експоненціально ковзну середню для досягнення швидшої збіжності.
Аналіз головних компонент (PCA) - це складний метод, який використовується для зменшення розмірності, з двома основними методами: класичним та некласичним. У статті обговорюються проблеми реалізації PCA за допомогою класичного методу і демонструється реалізація на C# на підмножині набору даних Iris.
Дізнайтеся, як створювати графіки масштабування у matplotlib для покращення візуалізації даних, зосередившись на даних про кількість опадів у Техасі. У цьому підручнику представлено код-орієнтований підхід, який виділяє невеликий дощ, велику зливу та незначні опади.
Створіть власний голосовий помічник для кодування, використовуючи відкриту велику мовну модель (LLM), таку як HuggingFace. Цей проект дозволяє вам взаємодіяти з LLM голосом, зберігаючи конфіденційність вашої роботи.
У статті демонструється реалізація функції ArgSort() мовою C# з прикладами коду як для масивів, так і для списків. Підкреслюється наявність перевантаження C# Array.Sort(a,b), яке дозволяє сортувати на основі значень у масиві.
У статті обговорюється студентський проект автора щодо прогнозування врожайності сільськогосподарських культур та цін на них за допомогою різних статистичних методів, підкреслюється важливість вибору теми, що цікавить. Проект отримав високу оцінку, і автор дає поради для початку успішного проекту, включаючи проведення огляду літератури.