Короткий зміст: У випуску журналу Microsoft Visual Studio Magazine за листопад 2024 року наведено демонстрацію k-NN регресії з використанням мови C#, відомої своєю простотою та інтерпретованістю. Метод прогнозує числові значення на основі найближчих навчальних даних, а демонстрація демонструє точність і процес прогнозування.
Nvidia, виробник чіпів для штучного інтелекту, вражає інвесторів доходом у $35 млрд за останні квартальні результати, прогнозуючи зростання на 70% у майбутньому. Прибуток більш ніж подвоївся в порівнянні з попереднім роком, при цьому виручка зросла на 94% порівняно з минулим роком.
NVIDIA очолює список TOP500 з 384 системами, 85% з яких використовують графічні процесори Hopper для прогнозування клімату та пошуку ліків. SC24 представляє cuPyNumeric для плавного масштабування та оновлення CUDA-Q для квантової симуляції, відзначаючи 20-ту річницю визнання NVIDIA.
Побудова системи МД може оптимізувати ціноутворення, спрогнозувати майбутні доходи та покращити процес прийняття рішень за допомогою ELT, моделювання відтоку та інформаційних панелей. Розширені модулі можуть ще більше підвищити створення вартості, надаючи вашій компанії конкурентну перевагу.
RAG використовує фільтрацію метаданих для покращення відповідей ШІ. Amazon Bedrock пропонує розширену фільтрацію метаданих для покращення генеративних додатків ШІ.
Великі мовні моделі (ВММ) навчаються на великих текстових даних для розуміння природної мови. Оптимізація FP8 на екземплярах Amazon SageMaker P5 значно прискорює навчання, змінюючи ефективність і швидкість роботи моделі.
Робот-компаньйон Moflin зі штучним інтелектом від Casio будує стосунки, не потребуючи їжі чи лотка для сміття. Він коштує 300 фунтів стерлінгів і прагне заспокоїти або відштовхнути своїх власників.
LangGraph і Tavily використовуються для створення дослідницького агента з LLM для узагальнення тексту. Система автономно генерує звіти та інтегрується з Google Docs для легкого редагування та організації.
В останньому документі NVIDIA представляє LLaMA-Mesh, що дозволяє генерувати 3D сітки за допомогою природної мови, без додавання нових токенів. У статті пояснюється, як LLM, такі як GPT4o, перетворюють текст в об'єктні файли, з квантуванням вершин для точності.
Дослідники MIT CSAIL розробили LucidSim, використовуючи генеративні симулятори штучного інтелекту та фізики для навчання роботів у різноманітних віртуальних середовищах, подолавши розрив між симуляцією та реальністю у навчанні роботів. Ідея виникла за межами кембриджської таверни, що призвело до прориву у створенні роботів експертного рівня без реальних даних.
Ілон Маск дасть свідчення щодо ролі X у поширенні дезінформації про заворушення у Великій Британії. Також були викликані керівники Meta і TikTok.
Влада США має намір зруйнувати монополію Google на ринку пошукових систем шляхом примусового продажу браузера Chrome, що свідчить про масштабне втручання в технологічну індустрію. Міністерство юстиції розглядає структурні заходи, щоб не дозволити Google використовувати свої продукти, в тому числі штучний інтелект і Android.
Джордан Рудесс дебютував як джембот зі штучним інтелектом в Массачусетському технологічному інституті, продемонструвавши унікальний дует з машиною під час живого концерту. Відома клавішниця співпрацює з дослідниками Массачусетського технологічного інституту, щоб дослідити «симбіотичну віртуозність» у створенні музики в реальному часі.
Реалізація регресії AdaBoost з нуля на Python, потім рефакторинг на C# з використанням k-найближчих сусідів замість дерев рішень. Алгоритм AdaBoost. Алгоритм R2 є модифікацією AdaBoost, і в Інтернеті можна знайти лише кілька робочих реалізацій на Python.
Налаштування мовних моделей для спеціалізованих галузей має вирішальне значення через проблеми, з якими стикаються великі мовні моделі. Невеликі мовні моделі набувають популярності завдяки своїй ефективності та економічності в конкретних галузях, пропонуючи швидший час виведення та менші вимоги до ресурсів. AWS надає такі рішення, як Amazon Bedrock і Amazon SageMaker, для взаємодії з цими моде...