Стаття демонструє регресію випадкового лісу та регресію з пакуванням у C# для журналу Microsoft Visual Studio Magazine. Пояснюється, як ансамбль дерев рішень дозволяє уникнути перенавчання та покращити прогнози.
Дослідники MIT CSAIL створили систему штучного інтелекту, яка імітує людські голосові звуки без навчання, натхненну когнітивною наукою. Цей прорив може призвести до створення більш інтуїтивно зрозумілих інтерфейсів звукового дизайну, реалістичних ШІ-персонажів та інноваційних методів вивчення мов.
Ілон Маск пропонує використовувати синтетичні дані, що самонавчаються, оскільки компанії, що займаються штучним інтелектом, стикаються з нестачею даних. Деякі застерігають від потенційного «колапсу моделі».
Професор Джон Макдермід підкреслює необхідність того, щоб регулятори мали повноваження відкликати моделі ШІ та оцінювати провідні індикатори ризику, щоб відповісти на занепокоєння Джеффрі Хінтона щодо небезпек ШІ. Спільні дослідження і розробка ШІ для безпеки мають вирішальне значення для зниження ризиків, виходячи за рамки тестування після розробки «червоними командами».
Deep Instinct пропонує DSX, передове рішення для кібербезпеки, що використовує глибоке навчання та генеративний ШІ для захисту від шкідливого програмного забезпечення та програм-вимагачів у режимі реального часу. Їхній інструмент DIANNA, що працює на базі Amazon Bedrock, розширює можливості SOC-команд, забезпечуючи швидкий аналіз відомих і невідомих загроз, вирішуючи ключові проблеми в мінливо...
«Сміття», згенероване штучним інтелектом, заполонило інтернет, а такі платформи, як Facebook, заохочують його поширення. Справжній людський контент стає рідкісним товаром, оскільки пости, створені штучним інтелектом, домінують на таких платформах, як LinkedIn і новинні сайти.
Складність стратегічного виміру VC (SVC) зростає зі збільшенням функцій витрат для кожного окремого випадку, що призводить до нескінченності. Лінійні класифікатори з вартісними функціями можуть відрізнятися від канонічних аналогів, що впливає на складність класифікації.
У 2025 році штучний інтелект стане рушійною силою стратегічних ініціатив у компаніях, впливаючи на власність, аутсорсинг і віддалену роботу. Взаємодія між цими аспектами має вирішальне значення для успішного впровадження ШІ, при цьому з'являються різні організаційні архетипи.
У Сіднеї розслідують використання підлітком штучного інтелекту для створення та розповсюдження фальшивих зображень студенток. Залучена поліція.
Байєсівське A/B тестування кидає виклик традиційним методам, використовуючи попередні переконання для динамічної оцінки ймовірності. Автор ділиться інсайдами з академічного та професійного досвіду, висвітлюючи переваги та недоліки байєсівського тестування.
Amazon Bedrock дозволяє користувачам імпортувати кастомні моделі, такі як Mistral Flan і Meta Llama, навчені в SageMaker для використання на вимогу. Це спрощує процес, пропонуючи економічно ефективне рішення для створення генеративних додатків ШІ з найкращими моделями.
GenAI дозволяє легко інтегрувати об'єкти реального світу в 4D-сцени, згенеровані штучним інтелектом, для створення відео. Прогрес у галузі генеративного ШІ стрімко розвивається, особливо в текстових завданнях, тоді як створення відео все ще перебуває на ранніх стадіях, але щомісяця вдосконалюється.
«Зелені берети» використовували АІ-платформу для пошуку інформації про вибухівку в Афганістані. Зловмисник Tesla Cybertruck використовував генеративний ШІ для планування атак.
Штучний інтелект підвищує рівень виявлення раку молочної залози, не збільшуючи при цьому кількість помилкових спрацьовувань у реальних умовах, вважають дослідники. Дослідження показують, що ШІ може допомогти у виявленні раку під час різних медичних сканувань.
Parameta Solutions використала Amazon Bedrock Flows для автоматизації операцій з обслуговування клієнтів, скоротивши час вирішення питань з кількох тижнів до кількох днів. Ця трансформація дозволила клієнтам отримати вичерпну інформацію про галузь та підвищити ефективність робочого процесу.