Набори геопросторових даних використовують мертві точки для визначення місцезнаходження за GPS між відомими точками, що впливає на якість і цінність даних. Телематичні дані з транспортних засобів включають різні сигнали, такі як місцезнаходження за GPS, швидкість тощо, що впливає на обробку та аналіз даних.
Стаття: «Регресія на основі дерева рішень з нуля за допомогою C#» представляє демонстрацію реалізації регресії на основі дерева рішень без рекурсії та вказівників. Точність моделі на навчальних даних є високою, але надмірне припасування є проблемою, яку вирішують за допомогою ансамблевих методів.
Автоматизація наукової кодової документації за допомогою GPT для оптимізації робочих процесів. Мета: Ефективний і послідовний перехід від коду до комплексних документів.
Система штучного інтелекту, що використовується урядом Великобританії для виявлення шахрайства з соціальними виплатами, демонструє упередженість на основі віку, інвалідності, сімейного стану, національності. Внутрішня оцінка показує, що певні групи мають більше шансів потрапити під слідство у справах про шахрайство.
Стівен Моффат і Рассел Т Девіс застерігають від надмірного використання ШІ в креативних індустріях, побоюючись зниження якості. Різдвяний спецвипуск «Доктора Хто» на BBC1 залишається довгоочікуваною подією для фанатів.
Створіть універсального LLM-агента для різних сценаріїв використання. Виберіть правильну модель і визначте логіку управління для оптимальної продуктивності та адаптивності.
Звіт попереджає, що бум ШІ принесе користь технологічним гігантам, але творцям загрожує втрата доходів без політичного втручання. Музичний сектор втратить 25% доходу, аудіовізуальний сектор - понад 20%, оскільки ринок генеративного ШІ зросте до 64 млрд євро до 2028 року.
Amazon Bedrock Model Distillation забезпечує високу точність менших, економічно ефективних моделей штучного інтелекту завдяки перенесенню знань з передових моделей. Ця функція автоматизує процес, забезпечуючи ефективність, оптимізацію витрат і розширену кастомізацію для різних сценаріїв використання.
Профілювання клієнтів розвивається завдяки векторним рекомендаціям на основі зразків, як-от Pinterest's Pinnersage, що пропонують користувачеві індивідуальний вибір. Ці алгоритми спрощують рекомендації, перетворюючи зразки на вектори, покращуючи залучення користувачів.
ШІ-програма GenCast від Google DeepMind перевершила прогноз ENS від ECMWF, передбачивши погоду та шляхи ураганів на 20% точніше. GenCast пропонує швидші та точніші щоденні прогнози погоди, що є багатообіцяючою розробкою для моніторингу погоди.
Інженери Массачусетського технологічного інституту випустили DrivAerNet++ - набір даних з 8000 проектів автомобілів для ШІ, щоб швидко покращити аеродинаміку автомобілів, скоротивши витрати на дослідження та розробки. Цей набір даних може призвести до створення більш економних автомобілів та електромобілів з більшим запасом ходу, прискорюючи автомобільні інновації для сталого майбутнього.
Массачусетський технологічний інститут справив значний вплив на COP16, продемонструвавши дослідження біорізноманіття та взявши участь у ключових дискусіях щодо глобальних цілей. Програма ESI NCS підтримала коаліції латиноамериканських міст у просуванні цілей KMGBF за допомогою різномасштабних дій та природоохоронних зусиль на рівні громад.
Дослідники з Массачусетського технологічного інституту розробили методику під назвою Score Distillation, яка дозволяє створювати високоякісні 3D-форми з 2D-моделей генерації зображень, покращуючи реалістичність без дорогого перенавчання. Цей прорив розширює потенціал ШІ для допомоги дизайнерам у створенні реалістичних 3D-моделей, представлений на Конференції з нейронних систем обробки інформації.
Регресія AdaBoost поєднує в собі слабкі методи навчання, такі як дерево рішень, k-NN та лінійна регресія. Результати показують, що нейронна мережа є найкращою за точністю прогнозування.
Лондонський офіс Google випромінює атмосферу стартапу, оскільки керуючий директор Деббі Вайнштейн досліджує комерційний потенціал штучного інтелекту на тлі антимонопольного законодавства США.