Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Демістифікація стека ШІ

Створення веб-додатків з інтеграцією генеративного ШІ є складним завданням, але розбиття його на шари, такі як стек ШІ, може допомогти зорієнтуватися в цьому ландшафті. Такі компанії, як OpenAI, використовують різні рівні, співпрацюючи з Microsoft для створення інфраструктури та веб-скребків для даних, щоб забезпечити роботу таких додатків, як ChatGPT.

Покращення лінійної регресії в C# з двосторонньою взаємодією

Застосування лінійної регресії з двосторонніми взаємодіями значно підвищило точність прогнозування. Модель досягла 83% точності на навчальних даних і 80% на тестових даних, що свідчить про її ефективність.

Розпочинаємо Лігу AWS LLM

AWS DeepRacer League представляє автономні перегони, а AWS LLM League демократизує машинне навчання за допомогою гейміфікованих змагань. Учасники налаштовують LLM для вирішення реальних бізнес-завдань, демонструючи переваги менших моделей з точки зору ефективності та доступності.

Розкриваючи силу SHAP: Вимірювання важливості предиктора машинного навчання

Значення Шейплі вимірюють важливість предиктора в ML-моделях, оцінюючи його за допомогою інструменту SHAP у Python. Синтетичний аналіз даних дає уявлення про точність моделі та значущість змінних.

Створення чат-бота AIOps за допомогою бізнес-плагінів Amazon Q

Організації стикаються з проблемами, пов'язаними з розрізненими сторонніми додатками, але плагіни Amazon Q Business пропонують рішення. Кастомні плагіни дозволяють чат-боту взаємодіяти з різними API за допомогою природної мови, спрощуючи складні хмарні операції та підвищуючи ефективність.

Революція в дизайні продуктів за допомогою штучного інтелекту та прискорених обчислень

nTop, заснована Бредлі Ротенбергом, пропонує дизайнерам швидкі інноваційні інструменти, використовуючи графічні процесори для паралельної обробки та штучного інтелекту. Компанія Ocado використала програмне забезпечення nTop для швидкого перепроектування своїх роботів, зменшивши їхню вагу на дві третини та заощадивши час і витрати.

Розкриття когнітивної складності в CNN

Моделі штучного інтелекту, такі як CNN, імітують людську візуальну обробку, але мають проблеми з причинно-наслідковими зв'язками. Незважаючи на те, що вони перевершують людину в деяких завданнях, їм не вдається узагальнювати класифікацію зображень, виділяючи обмеження.

Переосмислення свого тилу: Правда про вашу задню частину тіла

Байєсівські методи пропонують надійне оцінювання параметрів, що виходить за рамки частотних інструментів. Розуміння надійності MCMC-самплерів має вирішальне значення для дослідників даних.

Трансформація перекладу за допомогою Amazon Bedrock

TransPerfect співпрацює з AWS, щоб оптимізувати переклад багатомовного контенту за допомогою моделей Amazon Bedrock AI, підвищуючи ефективність і масштабованість. Співпраця спрямована на оптимізацію робочих процесів, зниження витрат і прискорення доставки контенту для компаній, що розвиваються в глобальному масштабі.

Кунжутна промова: Модель штучного інтелекту, що революціонізує мову, схожу на людську

Sesame AI представляє модель Speech-to-Speech, що використовує джерела даних Moshi. Дізнайтеся про кодер Mimi та архітектуру з двома трансформаторами для генерації звуку.

OpenAI дає відсіч: Зустрічний позов проти Ілона Маска

OpenAI подає в суд на Ілона Маска за переслідування і домагається судового позову, щоб зупинити подальші атаки на компанію. Суперечка між співзасновниками загострюється, коли OpenAI переходить від некомерційної до комерційної структури.

Людська сторона машинного навчання

Короткий зміст: У статті обговорюються людські аспекти машинного навчання, підкреслюється важливість комунікації та розуміння кінцевих користувачів. Вона також висвітлює роль інженерів AI/ML, команд MLOps і зацікавлених сторін у створенні цінних додатків.

Небезпеки вежі зі слонової кістки

Колишній дослідник ділиться інсайдами про те, як розпочати проект машинного навчання з правильного визначення проблеми для досягнення успіху. Підкреслює важливість розуміння, пошуку та вирішення бізнес-проблеми, прихованої в наборах даних.

Дебати про штучний інтелект розпочато: Deb8flow з LangGraph та GPT-4o

Deb8flow використовує ШІ-агентів, таких як «За» і «Проти», для автономних дебатів, з перевіркою фактів і модерацією в режимі реального часу. Удосконалена архітектура використовує LangGraph та GPT-4o, гарантуючи, що дебати залишаються заснованими на правді.