RAG і Fine-Tuning - це два методи вдосконалення великих мовних моделей, таких як ChatGPT і Gemini, що дозволяють отримати доступ до зовнішніх джерел знань для пошуку актуальної інформації без перенавчання. RAG покращує вхідні дані шляхом отримання зовнішніх даних, тоді як Fine-Tuning адаптує модель до конкретних вимог, революціонізуючи можливості LLM для різних застосувань.
Теплові карти Wall Street Journal показують вплив вакцин на хвороби в США. Функція pcolormesh() з Matplotlib відтворює теплову карту кору, демонструючи можливості сторітелінгу даних.
Структура команди з обробки даних має вирішальне значення для ефективного використання даних та штучного інтелекту. Централізовані команди можуть стати вузькими місцями без належної інтеграції експертизи домену.
GPT-3 викликав інтерес до великих мовних моделей (LLM), таких як ChatGPT. Дізнайтеся, як LLM обробляють текст за допомогою токенізації та нейронних мереж.
ШІ важко розрізняти схожі породи собак через переплутані ознаки. PawMatchAI використовує унікальний екстрактор морфологічних ознак, щоб імітувати те, як люди-експерти розпізнають породи, зосереджуючись на структурованих ознаках.
LettuceDetect, легкий детектор галюцинацій для трубопроводів RAG, перевершує попередні моделі, пропонуючи ефективність і доступність з відкритим вихідним кодом. Великі мовні моделі стикаються з проблемами галюцинацій, але LettuceDetect допомагає виявляти і усувати неточності, підвищуючи надійність у критичних областях.
Дослідники борються з хибною регресією в аналізі часових рядів - критично важливою проблемою, яку часто ігнорують, але яка має реальні наслідки. Розуміння цієї концепції є життєво важливим для економістів, дослідників даних та аналітиків, щоб уникнути хибних висновків у своїх моделях.
Microsoft і Google представили нові моделі штучного інтелекту, що імітують світи відеоігор, а інструмент Muse від Microsoft обіцяє революціонізувати розробку ігор, дозволивши дизайнерам експериментувати зі згенерованими штучним інтелектом ігровими відеороликами, заснованими на реальних ігрових даних з Ninja Theory's Bleeding Edge.
Моделі DeepSeek-R1 на Amazon Bedrock Marketplace демонструють вражаючу продуктивність у математичних тестах. Оптимізуйте моделі мислення за допомогою швидкої оптимізації на Amazon Bedrock для отримання більш лаконічних слідів мислення.
Демонструє еволюційне навчання лінійної регресії за допомогою C#. Використовує нейронну мережу для генерації синтетичних даних. Еволюційний алгоритм перевершує традиційні методи навчання за точністю.
Octus трансформує кредитний аналіз за допомогою чат-бота CreditAI на основі штучного інтелекту, пропонуючи миттєву інформацію про тисячі компаній. Octus переніс CreditAI на Amazon Bedrock, підвищивши продуктивність і масштабованість, зберігаючи при цьому нульовий час простою.
Автономні цифрові помічники, такі як Operator від OpenAI, тепер можуть замовляти продукти для користувачів, але контроль має вирішальне значення. АІ-агент може переміщатися по веб-сайтах і виконувати завдання, пропонуючи новий рівень зручності та інтриги.
Боти зі штучним інтелектом допомагають користувачам у додатках для знайомств, фліртуючи, пишучи повідомлення та створюючи профілі. Експерти застерігають від надмірного покладання на штучний інтелект, оскільки це може зменшити людську автентичність у стосунках.
Теорія ігор досліджує дії гравців та ймовірності, вводячи змішані стратегії для більш складного аналізу. Рівновага Неша має вирішальне значення для оптимальних стратегій в іграх, що включають випадковість.
Verisk є піонером генеративного штучного інтелекту в страхуванні завдяки Mozart, скорочуючи час прийняття змін з декількох днів до декількох хвилин за допомогою Amazon Bedrock. Компаньйон на основі ШІ порівнює юридичні документи, надаючи суттєві відмінності у зручному для сприйняття форматі.