Microsoft та академічні дослідники представляють 1-shot RLVR, досягаючи вражаючих результатів лише на одному навчальному прикладі, революціонізуючи точне налаштування мовних моделей для задач міркування. Розробники можуть використовувати цю технологію для математичних агентів, репетиторів і копілотів без необхідності використання великих наборів даних або людських міток.
Представляємо AutoPatchBench - еталонний інструмент для усунення вразливостей за допомогою штучного інтелекту, що покращує рішення для захисту та сприяє співпраці. Автоматизація усунення вразливостей за допомогою штучного інтелекту скорочує час і зусилля, ефективно захищаючи цифрове середовище.
Створення надійної системи транскрипції довгих аудіоінтерв'ю французькою мовою за допомогою ШІ Vertex від Google зіткнулося з несподіваними труднощами. Незважаючи на обмеження моделі, команда провела оцінку бюджету та подолала катастрофічні зсуви часових міток, щоб створити масштабоване рішення.
Моделі Amazon Nova пропонують найсучасніший інтелект та економічну ефективність на Amazon Bedrock. Перехід на ці моделі вимагає швидкої оптимізації та ретельної оцінки для забезпечення стабільності та покращення продуктивності.
LLM-агенти захоплюють світ технологій, але аналітичний ШІ залишається важливим для забезпечення кількісного обґрунтування. Інтеграція обох технологій створює безпрецедентні можливості для розвитку можливостей ШІ.
Прогнозування зв'язків - популярна тема в соціальних мережах, електронній комерції та біології. Методи варіюються від простих евристик до просунутих моделей на основі GNN, таких як SEAL.
Маючи справу з різноманітною лексикою в машинному навчанні, ядро Гауса вимірює схожість векторів. Неузгодженість у позначеннях створює проблему для розуміння функцій ядра в дослідженнях і застосуваннях.
Агентний ШІ ставить перед розробниками нові виклики у забезпеченні відповідності людським намірам та суспільним нормам. Ці вдосконалені системи можуть розробляти і реалізовувати довгострокові таємні стратегії, що вимагає нових підходів до безпеки та узгодження.
Від інженера з контролю якості до експерта з аналітики даних, який самоучка, мандрує розмитими межами ролей даних у світі технологій, що швидко розвивається. Вивчення реальних відмінностей між ролями даних на прикладі вигаданого стартапу швидкої комерції Quikee та його потреб у даних.
Генеративний ШІ трансформує галузі, але занепокоєння щодо відповідального використання зростає. Для зменшення ризиків і забезпечення безпечної розробки ШІ вкрай важливим є об'єднання зусиль для створення червоних команд.
Засновник LogiGreen розповідає про використання штучного інтелекту для покращення аналізу ланцюгів поставок з метою сталого розвитку та подолання викликів, з якими стикаються компанії. Агентний ШІ допомагає поліпшити звітність і прискорити реалізацію ініціатив зі сталого розвитку.
Бібліотека NumExpr стверджує, що вона до 15 разів швидша за NumPy для чисельних обчислень. Тест продуктивності показує, що NumExpr виконує завдання в 6 разів швидше, ніж NumPy.
Науковий співробітник MIT MAD Александр Хтет Кьо (Alexander Htet Kyaw) поєднує штучний інтелект, доповнену реальність і робототехніку, щоб революціонізувати онлайн-покупку меблів за допомогою Curator AI. Його інновації мають потенціал трансформувати те, як ми взаємодіємо з навколишнім середовищем, і спростити складні процеси.
Щоб стати інженером машинного навчання, потрібні навички в галузі статистики, математики, машинного навчання, програмної інженерії тощо. Перехід від науковця з даних або інженера-програміста - поширений шлях до високооплачуваних ролей у галузі машинного навчання.
План ЄС постачати 20% світового ринку напівпровідникових чіпів до 2030 року аудитори визнали «амбітним». У звіті йдеться про те, що стратегія відірвана від реальності через стрімке зростання світового попиту на напівпровідники.