Британський стартап Synthesia співпрацює з Shutterstock, щоб покращити аватарки зі штучним інтелектом, використовуючи стокові кадри. Угода вартістю $2 млрд спрямована на покращення виразу обличчя, тембру голосу та мови тіла аватарів для більш реалістичної взаємодії.
Колишній дослідник ділиться інсайдами про те, як розпочати проект машинного навчання з правильного визначення проблеми для досягнення успіху. Підкреслює важливість розуміння, пошуку та вирішення бізнес-проблеми, прихованої в наборах даних.
«Чорне дзеркало» переосмислює наукову фантастику за допомогою сучасних алегорій, що формують наш погляд на технології та майбутнє. Кожен епізод віддзеркалює наші колективні тривоги або вводить нові страхи через майстерну розповідь".
Catboost представляє новий метод обчислення цільової статистики для категоріальних змінних, що дозволяє уникнути таких проблем, як розрідженість і проблеми з пам'яттю. Замінюючи одномоментне кодування на згладжене середнє, Catboost надає практичне рішення для реальних задач.
Amazon, Google і Microsoft за підтримки Трампа будують водомісткі центри обробки даних у посушливих регіонах по всьому світу. Плани будівництва сотень нових об'єктів викликають занепокоєння щодо загострення дефіциту води для постраждалого населення.
Організації застосовують мульти-LLM-підхід до генеративних додатків ШІ, що дозволяє створювати більш універсальні та ефективні моделі, пристосовані до конкретних завдань і вимог. Впровадження ефективної мульти-LLM-маршрутизації є ключем до спрямування підказок користувача до потрібного LLM для різноманітних випадків використання, від генерації тексту до складного аналізу, в різних галузях знань.
Потреба в енергії для центрів обробки даних зі штучним інтелектом зросте в чотири рази до 2030 року
МЕА прогнозує різке зростання енергетичних потреб ШІ, але применшує вплив на клімат. До 2030 року обробка даних для ШІ в США може перевищити споживання енергії у важкій промисловості.
Amazon Q Business пропонує допомогу на основі штучного інтелекту для підвищення ефективності роботи персоналу за рахунок скорочення часу, витраченого на виконання завдань. Завдяки надійним функціям безпеки та детальній аналітиці організації можуть вимірювати підвищення продуктивності та оптимізувати використання для досягнення максимального ефекту.
Банк Англії попереджає, що програми штучного інтелекту можуть маніпулювати ринками з метою отримання прибутку, посилаючись на ризики у звіті про автономні системи. Здатність штучного інтелекту використовувати можливості викликає занепокоєння у банків і трейдерів, повідомляє комітет з фінансової політики.
ЄС планує інвестувати 20 мільярдів євро в енергоємні суперкомп'ютери для ШІ. Стратегія спрямована на те, щоб зробити Європу конкурентоспроможним континентом ШІ, каже віце-президент Вірккунен.
Доктор Мехмет Оз, голова агентства Medicare і Medicaid з бюджетом $1,5 трлн, припускає, що ШІ-моделі можуть перевершити лікарів-людей. Оз наголошує на економічній ефективності та перевагах, які надають пацієнти ШІ-аватарам у сфері охорони здоров'я.
Агенти Amazon Bedrock Agents спрощують розробку додатків для генеративного ШІ, розбиваючи завдання на частини та використовуючи FM. Взаємодія з людиною в циклі забезпечує безпечну та ефективну роботу агентів, а для валідації використовуються HITL-патерни.
Використання правил в управлінні продуктами може допомогти боротися з шахрайством та утримувати вигідних клієнтів. Впровадження статичних правил може бути швидшим, більш зрозумілим і відповідним вимогам у таких галузях, як фінанси та охорона здоров'я.
Дослідники Массачусетського технологічного інституту та лабораторії штучного інтелекту MIT-IBM Watson AI Lab розробляють революційний мультимодальний підхід з використанням великих мовних моделей та графових моделей для оптимізації дизайну молекул, що дозволяє підвищити рівень успішності з 5% до 35%. Ця інноваційна методика може автоматизувати весь процес проектування та синтезу молекул, що по...
Організації звертаються до синтетичних даних, щоб орієнтуватися на правила конфіденційності та дефіцит даних при розробці ШІ. Amazon Bedrock пропонує безпечну, відповідну вимогам і високоякісну генерацію синтетичних даних для різних галузей, вирішуючи проблеми та розкриваючи потенціал процесів, керованих даними.