Марієт'є Шааке у своїй новій книзі обговорює безпрецедентну владу великих технологій. Вона підкреслює, що вплив технологічних компаній поширюється на різні сектори, на відміну від попередніх монополій.
DER SPIEGEL покращує рекомендації новин, використовуючи великі мовні моделі (LLM) для точного прогнозування. Результати показують, що LLM досягають 56% точності@5, перевершуючи випадкові рекомендації.
Cohere випускає Rerank 3.5 через Rerank API на Amazon Bedrock, покращуючи релевантність пошуку та можливості ранжування контенту для клієнтів AWS. Технологія Rerank покращує результати пошуку, аналізуючи семантичне значення, наміри користувачів і бізнес-правила, що приносить користь платформам електронної комерції та глобальним організаціям у різних секторах.
Зростає занепокоєння щодо впливу великих мовних моделей (ВММ) на навколишнє середовище. Приклад: Llama 3.1 405B від Meta вимагає величезних ресурсів, викидає тонни CO2. OpenAI стикається з фінансовими труднощами, оскільки витрати на виведення майже збігаються з загальним доходом.
Почніть з проблеми, а не з рішення. Уникайте нав'язування чат-ботів для вирішення проблем, спочатку зосередьтеся на бізнес-процесах.
Open Food Facts використовує машинне навчання для покращення своєї бази даних продуктів харчування, зменшуючи кількість нерозпізнаних інгредієнтів та підвищуючи точність даних. Проект демонструє успіх створення власної моделі, яка перевершує існуючі рішення на 11%.
Зберігання деревовидних структур даних у вигляді списків спрощує пошук вузлів. Перетворення повних списків у стислі індексні дерева вимагає використання явних дочірніх індексів.
Найбільші новинні організації Канади подали до суду на OpenAI за використання їхніх статей для навчання ChatGPT без дозволу. Позов вимагає відшкодування збитків і частки прибутку, а також судової заборони на використання статей у майбутньому.
Мультимодальні вбудовування об'єднують текстові та графічні дані в єдину модель, уможливлюючи крос-модальні додатки, такі як підписи до зображень і модерація контенту. CLIP вирівнює представлення тексту і зображень для класифікації зображень з нульового кадру, демонструючи переваги спільного простору для вбудовування.
Мей втрачає роботу через людиноподібних роботів, проходить експериментальну ін'єкцію обличчя, щоб уникнути їх. Сім'я бореться із забрудненим довкіллям, залежністю від девайсів у похмурому світі.
Агентний ШІ поєднує в собі спеціалізованих агентів для розширення можливостей. Такі великі гравці, як Microsoft і Google, інвестують значні кошти в дослідження агентного ШІ.
Собаки воліють какати обличчям з півночі на південь. Дізнайтеся, як виміряти це в домашніх умовах за допомогою програми-компас та байєсівської статистики. Дослідник повторює дослідження з власним собакою, зафіксувавши понад 150 «сеансів вирівнювання».
Відомствам Уайтхолу бракує прозорості у використанні ШІ. Це викликає занепокоєння, оскільки штучний інтелект впливає на мільйони життів, прикладами чого є Міністерство праці та соціальної політики (DWP) та Міністерство внутрішніх справ (Home Office).
LLMs.txt - це новий веб-стандарт, оптимізований для механізмів міркувань, який швидко поширюється завдяки підтримці Mintlify. Співзасновник Джеремі Говард запропонував LLMs.txt, щоб допомогти системам штучного інтелекту ефективніше розуміти вміст веб-сайтів.
Сенат рекомендує окреме законодавство про ШІ та захист творчих працівників. Amazon, Google, Meta критикують за невизначеність щодо використання австралійських даних у навчанні ШІ.