Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Гаррісон Форд привертає увагу до проблеми штучного інтелекту у відеоіграх

З липня актори озвучення в SAG-AFTRA страйкують через використання штучного інтелекту у відеоіграх. У суперечці беруть участь такі великі видавці, як Activision Blizzard і Disney, що вплинуло на останні ігри, такі як Destiny 2 і Genshin Impact.

Google захистив суперечливе рішення на загальних зборах колективу

На нещодавніх зборах керівники Google оголосили про плани покласти край ініціативам щодо різноманітності та відкликати обіцянку не використовувати штучний інтелект на озброєнні. Рішення компанії оновити навчальні програми та брати участь у геополітичних дискусіях викликало суперечки серед працівників.

Зламування коду: Демістифікація калібрування моделі

Калібрування забезпечує відповідність прогнозів моделі реальним результатам, підвищуючи надійність. Такі оціночні показники, як очікувана похибка калібрування, вказують на недоліки і потребу в нових поняттях калібрування.

Етичні обчислення: Філософські погляди на штучний інтелект

Професор Массачусетського технологічного інституту Армандо Солар-Лезама досліджує вікову боротьбу за контроль над машинами в золотий вік генеративного ШІ. Курс «Етика комп'ютерних технологій» в Массачусетському технологічному інституті заглиблюється в ризики сучасних машин та моральну відповідальність програмістів і користувачів.

Швидкісне протистояння: Полярники проти панд

Швидкість має вирішальне значення для обробки даних у хмарних сховищах даних, впливаючи на витрати, своєчасність даних і контури зворотного зв'язку. Тест на порівняння швидкості між Polars і Pandas має на меті дослідити вимоги до продуктивності та забезпечити прозорість для потенційних користувачів.

Досягнення балансу: Дані та стратегія

Щоб стати керованими даними, організації стикаються з проблемами ефективного використання даних, аналітики та штучного інтелекту. Дженс, експерт з даних, окреслює стратегії для розкриття повного потенціалу даних у різних галузях.

ШІ-компанії беруть гору в консультуванні з питань авторського права у Великій Британії

Бібан Кідрон попереджає, що зміни в британському законодавстві про авторське право надають перевагу ШІ, а не креативним індустріям, що призводить до переміщення багатства в технологічний сектор. Уряд ризикує підірвати порядок денний зростання, пропонуючи навчання ШІ на творчих роботах.

Освоюємо регресію в машинному навчанні: Порівняння найкращих методів

Основні методи регресії: лінійний, k-найближчих сусідів, ядрового хребта, гауссового хребта, нейронної мережі, випадкового лісу, AdaBoost та градієнтного бустингу. Ефективність кожного методу залежить від розміру та складності набору даних.

Відкрийте для себе можливості Meta SAM 2.1 у Amazon SageMaker JumpStart!

Meta SAM 2.1, передова модель сегментації зору, тепер доступна на Amazon SageMaker JumpStart для різних галузей. Ця модель пропонує найсучасніші можливості виявлення та сегментації об'єктів з підвищеною точністю та масштабованістю, що дозволяє організаціям ефективно досягати точних результатів.

Спростіть інтеграцію корпоративних знань з Amazon Q Business

Amazon Q Business - це асистент на основі штучного інтелекту, який спрощує великомасштабну інтеграцію даних для підприємств, підвищуючи ефективність та якість обслуговування клієнтів. AWS Support Engineering успішно впровадила Amazon Q Business для автоматизації обробки даних, забезпечуючи швидкі та точні відповіді на запити клієнтів.

Моделі Falcon 3: Вивільнення потужності за допомогою Amazon SageMaker JumpStart

Моделі Falcon 3 від TII в Amazon SageMaker JumpStart пропонують найсучасніші мовні моделі з параметрами до 10B. Досягаючи найсучаснішої продуктивності, вони підтримують різні додатки і можуть бути зручно розгорнуті за допомогою інтерфейсу користувача або Python SDK.

Прискорення навчання графових нейронних мереж за допомогою GraphStorm v0.4

GraphStorm v0.4 від AWS AI впроваджує інтеграцію з DGL-GraphBolt для швидшого навчання ШНМ та висновків на великомасштабних графах. Структура графів fCSC GraphBolt зменшує витрати пам'яті на 56%, підвищуючи продуктивність у розподілених середовищах.

Розширення прав і можливостей дівчат в освіті зі штучного інтелекту

Тара Чкловскі та Аншита Саїні з Technovation обговорюють розширення прав і можливостей дівчат у всьому світі через освіту в галузі штучного інтелекту, вирішення реальних проблем та інклюзивні ініціативи в галузі ШІ. Дізнайтеся про можливості наставництва в сезоні 2025 року та технологічні досягнення на конференції NVIDIA GTC.

Подорож у часі: 4-вимірні дані у бульбашкових діаграмах

Бульбашкові діаграми доповнені переходами між станами «до» і «після» для більш інтуїтивного сприйняття користувачем. Розробка рішення включала в себе оновлення математичних концепцій та вибір найбільш підходящих дотичних ліній.