Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Революційна співпраця між людиною та штучним інтелектом в Массачусетському технологічному інституті

Студенти Массачусетського технологічного інституту представили інноваційні AI-проекти на NeurIPS 2024: «Be the Beat» пропонує музику, засновану на танцювальних рухах, «A Mystery for You» розвиває навички критичного мислення в освітній грі. Обидва проекти ілюструють потенціал ШІ як каталізатора творчості та переформатування взаємодії між людиною та комп'ютером.

Додаток DeepSeek зіткнувся з негативною реакцією в Італії через проблеми з даними

Італійські та ірландські регулятори вимагають відповідей від DeepSeek через проблеми з використанням даних. Китайський чат-бот зникає з магазинів додатків в Італії на тлі побоювань уряду щодо збору даних.

Помилки штучного інтелекту в AdTech

Проблеми переходу до глибокого навчання в AdTech призвели до інцидентів, але в кінцевому підсумку покращили продуктивність платформи ML. Стратегії управління інцидентами мають вирішальне значення для надійних конвеєрів моделей у виробництві.

Вивільнення мовних моделей бачення

ВЛМ поєднують текстові та візуальні дані для таких завдань, як перевірка якості та субтитрування зображень, заповнюючи прогалину між текстовими та візуальними даними. Методи підказок VLM включають підказки з нульовим чи кількома кадрами, а також підказки, керовані виявленням об'єктів, що покращують розуміння моделями завдань.

Підвищення продуктивності ШІ в умовах невизначеності

Дослідники з Массачусетського технологічного інституту та інші виявили ефект навчання в приміщенні: Агенти штучного інтелекту, навчені в менш шумному середовищі, перевершили тих, хто навчався в шумному, кинувши виклик загальноприйнятій думці. Дослідження, представлене на конференції AAAI, пропонує нові підходи до навчання ШІ-агентів для підвищення їхньої ефективності.

Виявлення моделей лами DeepSeek-R1 в Amazon Bedrock

Моделі DeepSeek AI DeepSeek-R1 тепер доступні в дистильованих версіях, що забезпечують підвищену ефективність без шкоди для продуктивності. Імпорт користувацьких моделей Amazon Bedrock дозволяє безперешкодно інтегрувати ці користувацькі моделі, вдосконалюючи додатки генеративного ШІ за допомогою економічно ефективних рішень.

Еволюція письма: Перевірка орфографії за допомогою штучного інтелекту

Інструменти штучного інтелекту стали частиною нашого повсякденного життя з моменту появи програми перевірки орфографії в 1979 році. Сьогоднішня розмова про штучний інтелект - це лише наступний крок на довгому шляху, на якому вже є інструменти лівої півкулі, такі як НЛП і машинне навчання, і інструменти правої півкулі, такі як генеративний ШІ.

Повстання роботів-плагіаторів

Шанувальники «Першого Пса» тепер можуть легко бути в курсі нових мультфільмів, підписавшись на сповіщення електронною поштою. Крім того, вони можуть придбати сувенірну продукцію та принти в магазині First Dog.

Освоєння швидкості штучного інтелекту: Посібник з виведення висновків на основі Amazon Bedrock

Компанії, що використовують великі мовні моделі (LLM), стикаються з проблемою швидкого реагування. Amazon Bedrock представляє оптимізований за часом висновок для моделей Claude від Anthropic та Llama від Meta на re:Invent 2024, покращуючи взаємодію з користувачами в робочих навантаженнях, чутливих до часу.

Жахливі темпи: екс-дослідник OpenAI про розробку штучного інтелекту

Колишній дослідник безпеки OpenAI Стівен Адлер застерігає від швидкого розвитку ШІ, називаючи його «дуже ризикованою грою» для людства. Він висловлює занепокоєння тим, що штучний загальний інтелект (ШЗІ) може перевершити людські здібності.

Зламування коду DeepSeek

Китайський стартап кидає виклик домінуванню США у сфері штучного інтелекту. Ініціатива Stargate та розширення Meta на $65 млрд сколихнули технологічну індустрію.

Покращення оцінки моделі LLM за допомогою SageMaker MLflow та FMEval

Оцінка великих мовних моделей (LLM) має вирішальне значення для розуміння можливостей і зменшення ризиків. FMEval та Amazon SageMaker пропонують інструменти для програмного оцінювання БММ на предмет точності, токсичності, справедливості та ефективності.

Революціонізуйте свій додаток за допомогою Amazon Aurora та Kendra

Генеративний ШІ та великі мовні моделі трансформують організації, покращуючи клієнтський досвід завдяки перетворенню даних. Amazon Aurora дозволяє легко індексувати дані для Amazon Kendra, щоб впровадити Retrieval Augmented Generation (RAG) для отримання точних відповідей.

Освоєння класифікації даних з датчиків часових рядів

Посібник з класифікації сенсорних даних за допомогою набору даних UCI HAR з TS-Fresh та scikit-learn. Дізнайтеся, як витягувати інформацію з часових рядів даних для розпізнавання людської активності.