NVIDIA представляє професійні сертифікати для фахівців з інфраструктури та операцій ШІ, пропонуючи структуровані шляхи для вдосконалення навичок. Сертифікати надають фахівцям передові навички роботи з інфраструктурою та операціями ШІ, що покращують перспективи кар'єрного росту.
Amazon SageMaker оголошує про оновлення інструментарію для оптимізації висновків, включаючи спекулятивне декодування та квантування FP8 для швидшої оптимізації генеративних моделей ШІ. Інтеграція з NVIDIA TensorRT-LLM для підвищення продуктивності та скорочення часу розгортання, що полегшує досягнення найкращих у своєму класі результатів за лічені години.
Amazon Q Business, генеративний асистент штучного інтелекту, інтегрується з QuickSight для уніфікованого діалогового досвіду в структурованих і неструктурованих джерелах даних. Інтеграція дозволяє отримувати дані та візуалізації з QuickSight в режимі реального часу, що підвищує точність і простоту відповідей, які надає Amazon Q Business.
Тім знайшов розраду в ChatGPT, використовуючи його як щоденник, щоб зорієнтуватися у своїх проблемах у шлюбі з Джилл. Чат-бот допоміг йому зрозуміти їхні розбіжності та керувати емоційними реакціями.
Лондонський офіс Google випромінює атмосферу стартапу, оскільки керуючий директор Деббі Вайнштейн досліджує комерційний потенціал штучного інтелекту на тлі антимонопольного законодавства США.
Chronos-Bolt в серії AutoGluon-TimeSeries пропонує більш швидке прогнозування з нульового пострілу, ніж традиційні моделі, перевершуючи статистичні та базові показники глибокого навчання. Заснований на архітектурі T5, він у 250 разів швидший і в 20 разів ефективніше використовує пам'ять, ніж оригінальні моделі Chronos, забезпечуючи точні прогнози.
Amazon SageMaker Fast Model Loader скорочує час розгортання LLM у 15 разів завдяки потоковому завантаженню ваг моделей з Amazon S3. Ця інновація трансформує розгортання LLM, пропонуючи швидший час завантаження для більш ефективних додатків ШІ.
Агенти штучного інтелекту - це динамічні об'єкти, які у 2024 році революціонізують розгортання, конфігурацію та моніторинг мереж. Вони адаптуються, міркують і діють автономно, покращуючи процес прийняття рішень і реагування в режимі реального часу.
Вчені Массачусетського технологічного інституту розробляють фотонний чіп для глибоких нейромережевих обчислень, досягаючи високої швидкості та точності. Чіп може революціонізувати глибоке навчання для таких застосувань, як лідар та високошвидкісні телекомунікації.
Генеруйте синтетичні дані для регресії машинного навчання за допомогою нейронної мережі із заданими параметрами. Спростіть генерацію складних даних за допомогою настроюваної функції на C#.
Дізнайтеся, як використовувати мережеву науку та Python для створення карти зв'язків між персонажами популярного серіалу Arcane з всесвіту League of Legends на Netflix. Витягуючи дані про персонажів та візуалізуючи мережу, ви зможете застосувати ці навички до будь-якої складної системи, а не лише до серіалу Arcane.
Перевіряйте моделі машинного навчання за допомогою 12 методів. Виберіть правильний, щоб забезпечити точні прогнози на основі наявних даних.
DER SPIEGEL покращує рекомендації новин, використовуючи великі мовні моделі (LLM) для точного прогнозування. Результати показують, що LLM досягають 56% точності@5, перевершуючи випадкові рекомендації.
Розробники re:Invent 2024 стикаються з унікальними викликами фізичних перегонів AWS DeepRacer. Перехід від віртуальних до фізичних перегонів становить значний виклик через різницю у середовищі та можливостях автомобілів.
ChatGPT випереджає науковців, що викликає занепокоєння щодо майбутнього ШІ. Дрю Бройніг поділяє ШІ на богів, стажерів і гвинтиків, підкреслюючи потенційні екзистенційні загрози.