Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Досягнення в графічному та геометричному ML: застосування та прориви у 2024 році

У 2023 році домінували геометричні методи та програми ML, а також помітні прориви в структурній біології, включаючи відкриття двох нових антибіотиків за допомогою GNN. Зростає тенденція до конвергенції методів ML та експериментальних методів в автономному відкритті молекул, а також використання Flow Matching для швидшого та детермінованого відбору зразків.

Розкриття можливостей графічного та геометричного ML: ідеї та інновації на 2024 рік

У цій статті автори обговорюють теорію та архітектуру графових нейронних мереж (ГНМ) і висвітлюють появу графових трансформаторів як тенденцію в графовому МН. Вони досліджують зв'язок між ГНМ і трансформаторами, показуючи, що ГНМ з віртуальним вузлом може імітувати трансформатор, і обговорюють переваги та обмеження цих архітектур з точки зору виразності.

Бінокль для розпізнавання птахів зі штучним інтелектом: Майбутнє спостереження за птахами

Австрійська компанія Swarovski Optik представляє бінокль AX Visio 10x32, перший у світі "розумний бінокль", який використовує технологію розпізнавання зображень для ідентифікації понад 9 000 видів птахів і ссавців. Бінокль вартістю $4,799 отримав свої ідентифікаційні можливості завдяки проекту Merlin Bird ID Корнельської орнітологічної лабораторії.

Розкриття потенціалу великих аналітиків даних: 6 навичок для неймовірної ефективності

Розвиток правильних навичок є ключовим для того, щоб стати чудовим аналітиком даних, включаючи вільне володіння мовою SQL, основи статистики та глибокі знання предметної області. Ці навички дозволяють аналітикам знаходити креативні рішення, ефективно виконувати якісну роботу та виявляти цінні інсайти.

Вивільнення сили довірчих інтервалів: Навігація в умовах невизначеності в даних

Довірчі інтервали необхідні в статистиці для оцінки діапазону значень для заданої змінної. Вони забезпечують більш точне представлення істинної статистики, навіть при обмеженому обсязі даних. Центральна гранична теорема відіграє ключову роль у побудові довірчих інтервалів.

Відкриваючи клітинне розмаїття: Глибинне навчання розкриває секрети секвенування одноклітинних

У статті досліджується значення технології одноклітинного секвенування для розуміння складності геному людини. Вона висвітлює роль методів глибокого навчання у розвитку секвенування одноклітинної ДНК та величезну кількість інструментів, доступних для аналізу даних секвенування одноклітинної РНК.

Супергеройська сила 2D пакетної нормалізації в глибокому навчанні

Глибинне навчання (ГН) зробило революцію в згорткових нейронних мережах (ЗНМ) і генеративному ШІ, а пакетна нормалізація 2D (BN2D) стала супергеройською технікою, яка покращує збіжність навчання моделей і продуктивність висновків. BN2D нормалізує розмірні дані, запобігаючи внутрішнім коваріаційним зсувам і сприяючи швидшій збіжності, дозволяючи мережі зосередитися на вивченні складних характер...

Розкриття потенціалу текстових вбудовувань: Трансформація фінансових пошукових додатків за допомогою Amazon Bedrock Cohere

Підприємства можуть використовувати текстові вставки, створені за допомогою машинного навчання, для аналізу неструктурованих даних і вилучення інсайтів. Багатомовна модель вбудовування Cohere, доступна на Amazon Bedrock, пропонує покращену якість документів, пошук для додатків RAG та економічно ефективне стиснення даних.

Оптимізація глобальних мереж: Розкриття архітектури для реалістичної генерації синтетичних даних

Генеративні змагальні мережі (GAN) привернули увагу завдяки своїй здатності генерувати реалістичні синтетичні дані, а також через їх зловживання при створенні глибоких фейків. Унікальна архітектура GAN включає генеративну мережу та мережу суперників, які навчаються досягати протилежних цілей за допомогою дворівневої оптимізації.

Розкрийте потенціал LDA: Практичний посібник з ефективного тематичного моделювання

Відкрийте для себе можливості латентного розподілу Діріхле (LDA) для ефективного моделювання тем у машинному навчанні та науці про дані. Дізнайтеся, як LDA можна застосовувати не лише до текстових даних, наприклад, в інтернет-магазинах та аналізі кліків, і як його можна інтегрувати з іншими імовірнісними моделями для персоналізованих рекомендацій.

Новини Керівники об'єдналися проти претензій на "добросовісне використання" в навчанні ШІ: Необхідні термінові дії Конгресу

Керівники новинної індустрії закликають Конгрес надати правові роз'яснення щодо використання журналістики для навчання асистентів штучного інтелекту, виступаючи проти компаній на кшталт OpenAI, які стверджують, що їхнє використання є добросовісним. Вони пропонують режим ліцензування, щоб забезпечити оплату контенту компаніями великого капіталу, подібно до того, як це роблять центри обміну прав...

Революція в гольфі: хмарне відстеження м'яча виводить PGA TOUR на нові висоти

PGA TOUR розробляє систему відстеження положення м'яча наступного покоління, яка використовує комп'ютерний зір і методи машинного навчання для визначення місцезнаходження м'ячів для гольфу на паттінг-гріні. Система, розроблена Інноваційним центром Amazon Generative AI, успішно відстежує положення м'яча та прогнозує координати його спокою.

Спрощення оберненої матриці за допомогою SVD-розкладання у C#

У статті обговорюється реалізація обернення матриці за допомогою сингулярного розкладання (SVD) у мові C#. Основні моменти включають рефакторинг функції MatInverseSVD() та різні алгоритми і варіації, що використовуються для обернення матриць.

Революція в інженерії програмного забезпечення: Вплив Gen AI на технічні команди

ШІ нового покоління змінить процес розробки додатків, що призведе до появи нових компаній, які розробляють штучний інтелект, і зменшить залежність від програмного забезпечення, написаного людиною. Зростає популярність великих мовних моделей (LLM) з відкритим вихідним кодом, що дозволяє невеликим фірмам і приватним особам створювати спеціалізовані моделі та революціонізувати програмну інженерію.

Експлуатовані 0-дні в Ivanti VPN: чорний хід до компрометації мережі

Невідомі зловмисники активно використовують дві критичні вразливості "нульового дня" у широко розповсюдженому пристрої віртуальної приватної мережі Ivanti, які дозволяють обійти двофакторну автентифікацію та виконати шкідливий код. Вразливості, що відслідковуються як CVE-2023-846805 та CVE-2024-21887, дозволяють зловмисникам легко запускати команди в системі та здійснювати різні шкідливі дії.