Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Революція в біології та медицині: 3 ключові питання

Керолайн Улер обговорює революцію даних у біології та потенціал машинного навчання для відкриття нового розуміння біологічних систем. Такі досягнення, як секвенування ДНК та моделі зору, формують нову еру в біології, надихаючи на інноваційні дослідження в галузі машинного навчання.

Декодування синтетичних даних в штучному інтелекті

Синтетичні дані імітують реальні дані для штучного інтелекту, захищаючи конфіденційність та прискорюючи розробку моделей. Генеративні моделі можуть створювати реалістичні синтетичні дані для різних модальностей, таких як мова, зображення, аудіо та табличні дані.

ChatGPT: Попередження для батьків про дистрес у дітей

OpenAI вводить нові заходи захисту для підлітків, які користуються ChatGPT, після судового позову щодо самогубства підлітка. У разі виявлення тривоги під час розмов з чат-ботами ШІ батькам будуть надсилатися сповіщення.

Революція в області штучного інтелекту завдяки базі знань Amazon Bedrock

RAG покращує роботу додатків штучного інтелекту, надаючи FM додаткові дані. Amazon Bedrock популярний для впровадження робочих процесів RAG за допомогою Terraform. Це рішення автоматизує ролі IAM та конфігурацію OpenSearch для ефективного управління даними.

Революція у сфері професійних послуг із Amazon Q Business

Proofpoint інтегрує Amazon Q Business, штучний інтелект-асистент, що підвищує продуктивність на 40% і економить 18 300 годин на рік. Спеціальні додатки оптимізують надання послуг, підвищують кваліфікацію команд і збільшують цінність для клієнтів.

Використовуйте GPT-OSS локально з Ollama: революційна зміна для мовних моделей

OpenAI випустила GPT-OSS, велику мовну модель, яка дозволяє користувачам запускати її локально за допомогою Ollama. Локальне запускання LLM забезпечує економію коштів, надійність та підвищену безпеку, залежно від сценаріїв використання.

The Dual Nature of Machine Learning

Мюррей Дейл та Ігнасіо Ландівар обговорюють вплив штучного інтелекту на творчість та прогнозування погоди. Вони ставлять під сумнів використання штучного інтелекту в особистій самореалізації та висловлюють занепокоєння щодо відсутності відповідальності за результати роботи штучного інтелекту.

Відновлення зруйнованої кіноіндустрії за допомогою штучного інтелекту

Режисер Алекс Прояс прогнозує, що штучний інтелект оптимізує кіноіндустрію, спростить і здешевить проекти, а також забезпечить художню свободу. Незважаючи на побоювання, Прояс вважає, що штучний інтелект принесе користь кінематографістам, спростивши виробничі процеси.

Вибір найкращого кодування для нейронних мереж

Використання кодування «one-over-n-hot» у нейронній мережі для категоріальних змінних показало багатообіцяючі результати з точністю 95%. Однак для остаточних висновків необхідні додаткові випробування.

Прийняття лікарів-штучного інтелекту

Лікарі є людьми і схильні до помилок через велике навантаження та обмежені ресурси. Штучний інтелект є перспективним у поліпшенні охорони здоров'я, вирішуючи такі постійні проблеми, як неправильні діагнози та нерівний доступ до медичної допомоги.

OpenAI: поточний вибір, але надовго?

У статті розглядаються фактори, що впливають на вибір організаціями платформ штучного інтелекту, підкреслюється важливість бренду, партнерських відносин та ресурсів для розробників. Маккафрі попереджає, що найбільшим ризиком для OpenAI є потенційне погіршення якості ресурсів для розробників, що може призвести до швидкої зміни платформи.