Щоб стати керованими даними, організації стикаються з проблемами ефективного використання даних, аналітики та штучного інтелекту. Дженс, експерт з даних, окреслює стратегії для розкриття повного потенціалу даних у різних галузях.
Бібан Кідрон попереджає, що зміни в британському законодавстві про авторське право надають перевагу ШІ, а не креативним індустріям, що призводить до переміщення багатства в технологічний сектор. Уряд ризикує підірвати порядок денний зростання, пропонуючи навчання ШІ на творчих роботах.
Amazon Q Business - це асистент на основі штучного інтелекту, який спрощує великомасштабну інтеграцію даних для підприємств, підвищуючи ефективність та якість обслуговування клієнтів. AWS Support Engineering успішно впровадила Amazon Q Business для автоматизації обробки даних, забезпечуючи швидкі та точні відповіді на запити клієнтів.
Швидкість має вирішальне значення для обробки даних у хмарних сховищах даних, впливаючи на витрати, своєчасність даних і контури зворотного зв'язку. Тест на порівняння швидкості між Polars і Pandas має на меті дослідити вимоги до продуктивності та забезпечити прозорість для потенційних користувачів.
Тара Чкловскі та Аншита Саїні з Technovation обговорюють розширення прав і можливостей дівчат у всьому світі через освіту в галузі штучного інтелекту, вирішення реальних проблем та інклюзивні ініціативи в галузі ШІ. Дізнайтеся про можливості наставництва в сезоні 2025 року та технологічні досягнення на конференції NVIDIA GTC.
Калібрування забезпечує відповідність прогнозів моделі реальним результатам, підвищуючи надійність. Такі оціночні показники, як очікувана похибка калібрування, вказують на недоліки і потребу в нових поняттях калібрування.
Meta SAM 2.1, передова модель сегментації зору, тепер доступна на Amazon SageMaker JumpStart для різних галузей. Ця модель пропонує найсучасніші можливості виявлення та сегментації об'єктів з підвищеною точністю та масштабованістю, що дозволяє організаціям ефективно досягати точних результатів.
Основні методи регресії: лінійний, k-найближчих сусідів, ядрового хребта, гауссового хребта, нейронної мережі, випадкового лісу, AdaBoost та градієнтного бустингу. Ефективність кожного методу залежить від розміру та складності набору даних.
Дослідники швидко розробляють базові моделі ШІ: у 2023 році їх було опубліковано 149, що вдвічі більше, ніж у попередньому році. Ці нейронні мережі, подібно до трансформаторів і великих мовних моделей, пропонують величезний потенціал для виконання різноманітних завдань і мають велику економічну цінність.
GraphStorm v0.4 від AWS AI впроваджує інтеграцію з DGL-GraphBolt для швидшого навчання ШНМ та висновків на великомасштабних графах. Структура графів fCSC GraphBolt зменшує витрати пам'яті на 56%, підвищуючи продуктивність у розподілених середовищах.
Бульбашкові діаграми доповнені переходами між станами «до» і «після» для більш інтуїтивного сприйняття користувачем. Розробка рішення включала в себе оновлення математичних концепцій та вибір найбільш підходящих дотичних ліній.
Професор Массачусетського технологічного інституту Армандо Солар-Лезама досліджує вікову боротьбу за контроль над машинами в золотий вік генеративного ШІ. Курс «Етика комп'ютерних технологій» в Массачусетському технологічному інституті заглиблюється в ризики сучасних машин та моральну відповідальність програмістів і користувачів.
Патрік Косгроув підкреслює високе споживання енергії серверами для інтернету. Китайський додаток DeepSeek AI значно зменшує енергоспоживання та вуглецевий слід у порівнянні з ChatGPT.
Короткий зміст: Розподіл Пуассона пояснюється простими словами, з прикладами та ключовими поняттями. Генерування синтетичних пуассонівських даних для машинного навчання спрощується за допомогою рівнянь.
Дослідники з Массачусетського технологічного інституту та Гарвардської медичної школи розробили неінвазивний підхід глибокого навчання для точного прогнозування ризику серцевої недостатності. Модель показала багатообіцяючі результати в клінічних випробуваннях, що дає надію на раннє втручання для запобігання госпіталізації.