У США зростає кількість відмов у страховому покритті через алгоритми штучного інтелекту; нові інструменти ШІ генерують автоматичні апеляції. Експерти в галузі охорони здоров'я закликають до реформування системи, щоб контролювати ціни та покращити покриття.
Нові резюме, створені штучним інтелектом, спрощують світ, усуваючи складнощі. Пошукові запити Google тепер пропонують машинні відповіді перед реальними посиланнями.
Paul McCartney warns AI could harm artists if copyright law changes. Proposals may hinder creativity.
Машинне навчання стимулює мобільну рекламу та ігрову індустрію завдяки нейронним мережам для прогнозування кліків. Провідні гравці, такі як Applovin, інвестують мільярди в залучення користувачів, переходячи на глибоке навчання для підвищення ефективності.
Генеративні асистенти ШІ стикаються з проблемами безпеки при розгортанні на виробництві. AWS надає структуру для оцінки засобів контролю безпеки для різних типів додатків. OWASP Top 10 для LLMs допомагає зрозуміти та зменшити загрози в додатках генеративного ШІ.
Startup Station A, заснована випускниками Массачусетського технологічного інституту, спрощує впровадження чистої енергії для бізнесу. Платформа пропонує ринковий майданчик для аналізу, торгів та вибору постачальників, співпрацюючи з великими компаніями, що займаються нерухомістю, для зменшення вуглецевого сліду.
Автоматизуйте прикріплення кастомних зображень Docker до доменів Amazon SageMaker Studio для підвищення продуктивності та безпеки. Розгорніть конвеєр за допомогою AWS CodePipeline, щоб оптимізувати процес створення та прикріплення зображень.
Дізнайтеся, як підходити до проектів з аналітики даних як професіонал: Визначте проблему, сформулюйте очікування та ефективно підготуйтеся до отримання результативних інсайтів. Чіткі цілі зацікавлених сторін та належне планування є ключовими для успішних проектів з аналізу даних.
Практичні проекти машинного навчання показують, які труднощі виникають при переході до виробництва. Оптимізуйте продуктивність моделі, узгодивши функції втрат і метрики з бізнес-пріоритетами.
Моделі машинного навчання досягли значних успіхів, але їхня складність може перешкоджати інтерпретації. Людські моделі знань пропонують рішення, перетворюючи дані на прості, дієві правила, підвищуючи довіру та простоту використання в різних сферах. Цей підхід особливо цінний для експертів у галузі, таких як лікарі, оскільки дає змогу отримати чіткі висновки зі складних даних для кращого прийня...
Аналітики даних стикаються з плутаниною щодо відмінностей між продуктовою та маркетинговою аналітикою. Продуктова аналітика покращує користувацький досвід, в той час як маркетингова аналітика фокусується на залученні нових користувачів.
Генеративні моделі ШІ, такі як AlphaFold та RFdiffusion, трансформують розробку ліків, передбачаючи молекулярні структури. MDGen від MIT пропонує новий підхід, ефективно моделюючи динамічні молекулярні рухи, щоб допомогти в розробці нових молекул для лікування таких захворювань, як рак.
Нобелівська робота Джеффрі Хінтона про обмежені машини Больцмана (Restricted Boltzmann Machines, RBM) пояснюється та реалізується в PyTorch. Обмежені Больцманівські машини - це некеровані моделі навчання для вилучення значущих ознак без вихідних міток, використовуючи енергетичні функції та розподіли ймовірностей.
Провідні компанії, такі як Microsoft, Oracle і Snap, використовують платформу штучного інтелекту NVIDIA для високопродуктивних і економічно ефективних послуг ШІ. Досягнення NVIDIA в оптимізації програмного забезпечення та платформа Hopper революціонізують ШІ-висновки, забезпечуючи винятковий користувацький досвід та оптимізуючи сукупну вартість володіння.
Папа Франциск закликав лідерів Давосу уважно стежити за впливом штучного інтелекту на майбутнє людства, попереджаючи про можливу кризу правди. Урядам і бізнесу рекомендується проявляти обережність і пильність, орієнтуючись у складнощах штучного інтелекту.