Стрічка новин про штучний інтелект і машинне навчання

Головні новини та публікації щодня! Будьте на крок попереду: дізнавайтеся першими про нові ідеї, тренди та інновації у сфері технологій

Вплив технологічних гігантів на наше сприйняття технологій

Марієт'є Шааке у своїй новій книзі обговорює безпрецедентну владу великих технологій. Вона підкреслює, що вплив технологічних компаній поширюється на різні сектори, на відміну від попередніх монополій.

Оновлення до Cohere Rerank 3.5 на Amazon Bedrock!

Cohere випускає Rerank 3.5 через Rerank API на Amazon Bedrock, покращуючи релевантність пошуку та можливості ранжування контенту для клієнтів AWS. Технологія Rerank покращує результати пошуку, аналізуючи семантичне значення, наміри користувачів і бізнес-правила, що приносить користь платформам електронної комерції та глобальним організаціям у різних секторах.

Медіа-гіганти проти OpenAI у мільярдному судовому процесі

Найбільші новинні організації Канади подали до суду на OpenAI за використання їхніх статей для навчання ChatGPT без дозволу. Позов вимагає відшкодування збитків і частки прибутку, а також судової заборони на використання статей у майбутньому.

Оптимізація деревоподібних структур даних: Підхід зі стислим індексом

Зберігання деревовидних структур даних у вигляді списків спрощує пошук вузлів. Перетворення повних списків у стислі індексні дерева вимагає використання явних дочірніх індексів.

Моторошний погляд у завтрашній день: Рецензія на «Хам» Хелен Філліпс

Мей втрачає роботу через людиноподібних роботів, проходить експериментальну ін'єкцію обличчя, щоб уникнути їх. Сім'я бореться із забрудненим довкіллям, залежністю від девайсів у похмурому світі.

Підвищення точності розпізнавання текстів за допомогою відкритого програмного забезпечення

Open Food Facts використовує машинне навчання для покращення своєї бази даних продуктів харчування, зменшуючи кількість нерозпізнаних інгредієнтів та підвищуючи точність даних. Проект демонструє успіх створення власної моделі, яка перевершує існуючі рішення на 11%.

Розкриття потенціалу мультимодальних вбудовувань

Мультимодальні вбудовування об'єднують текстові та графічні дані в єдину модель, уможливлюючи крос-модальні додатки, такі як підписи до зображень і модерація контенту. CLIP вирівнює представлення тексту і зображень для класифікації зображень з нульового кадру, демонструючи переваги спільного простору для вбудовування.

Вивільнення сили собачих лайок: Байєсівський аналіз

Собаки воліють какати обличчям з півночі на південь. Дізнайтеся, як виміряти це в домашніх умовах за допомогою програми-компас та байєсівської статистики. Дослідник повторює дослідження з власним собакою, зафіксувавши понад 150 «сеансів вирівнювання».

Уряд Великобританії нехтує вимогою щодо прозорості ШІ

Відомствам Уайтхолу бракує прозорості у використанні ШІ. Це викликає занепокоєння, оскільки штучний інтелект впливає на мільйони життів, прикладами чого є Міністерство праці та соціальної політики (DWP) та Міністерство внутрішніх справ (Home Office).

Розкриваємо секрети LLMs.txt

LLMs.txt - це новий веб-стандарт, оптимізований для механізмів міркувань, який швидко поширюється завдяки підтримці Mintlify. Співзасновник Джеремі Говард запропонував LLMs.txt, щоб допомогти системам штучного інтелекту ефективніше розуміти вміст веб-сайтів.

Темний бік великих технологій: Культурне пограбування заради навчання ШІ

Сенат рекомендує окреме законодавство про ШІ та захист творчих працівників. Amazon, Google, Meta критикують за невизначеність щодо використання австралійських даних у навчанні ШІ.

Максимізація видимості AWS Trainium та Inferentia за допомогою Datadog

Інтеграція Datadog з AWS Neuron оптимізує робочі навантаження ML на екземпляри Trainium та Inferentia, забезпечуючи високу продуктивність та моніторинг у реальному часі. Інтеграція з Neuron SDK забезпечує глибоке спостереження за виконанням моделі, затримками та використанням ресурсів, що сприяє ефективному навчанню та висновкам.

Підвищення швидкості висновків у реальному часі за допомогою Rad AI та Amazon SageMaker

Флагманський продукт Rad AI, Rad AI Impressions, використовує LLM для автоматизації радіологічних звітів, заощаджуючи час і зменшуючи кількість помилок. Їхні ШІ-моделі генерують знімки для мільйонів досліджень щомісяця, приносячи користь тисячам радіологів по всій країні.