Резюме: Створення ефективних наборів даних зображень для проектів класифікації зображень передбачає встановлення відсікання зображень, довірчих порогів та використання поетапних/синтетичних даних для покращення продуктивності моделі. Досягнення балансу між занадто малою та занадто великою кількістю зображень у класі має вирішальне значення для оптимальних результатів навчання.
Дослідники розробили ProtGPS - модель, яка прогнозує локалізацію білків у певних компартментах клітин. Цей інструмент штучного інтелекту також може створювати нові білки та допомагати зрозуміти механізми захворювань.
Amazon Bedrock пропонує безсерверні можливості для використання мовних вбудовувань у додатках, таких як RSS-агрегатор. Рішення використовує сервіси Amazon, такі як API Gateway, Bedrock і CloudFront, для класифікації та семантичного пошуку з нуля.
DeepSeek R1 LLM перевершує конкурентів, таких як OpenAI o1, за меншу ціну. Дистиляція моделей, ключова для успіху R1, може сигналізувати про зсув до комерціалізації LLM.
Віртуалізація дозволяє запускати кілька віртуальних машин на одному фізичному комп'ютері, що має вирішальне значення для хмарних сервісів. Від мейнфреймів до безсерверних хмарних обчислень хмарні технології значно еволюціонували, впливаючи на нашу повсякденну цифрову взаємодію.
Розвиток генеративного ШІ призводить до нових загроз кібербезпеці. Armis, Check Point, CrowdStrike, Deloitte і WWT інтегрують NVIDIA AI для захисту критичної інфраструктури на конференції S4.
Статистичний висновок допомагає спрогнозувати потреби кол-центру, аналізуючи дані за допомогою розподілу Пуассона із середнім значенням λ = 5. Спрощує процес оцінки, фокусуючись на одному параметрі.
Amazon Bedrock представляє програму LLM-as-a-judge для оцінки моделей штучного інтелекту, пропонуючи автоматизовану, економічно ефективну оцінку за кількома показниками. Ця інноваційна функція спрощує процес оцінювання, підвищуючи надійність та ефективність ШІ для прийняття обґрунтованих рішень.
Ілон Маск конфліктує з Семом Альтманом щодо керівництва OpenAI, побоюючись, що прибуток буде важливішим за людяність. Маск прагне зупинити зростання OpenAI після поглинання Twitter під назвою X.
Закони масштабування ШІ описують, як різні способи застосування обчислень впливають на продуктивність моделі, що призводить до вдосконалення моделей міркувань ШІ та прискорення попиту на обчислення. Масштабування перед навчанням показує, що збільшення даних, розміру моделі та обчислень покращує продуктивність моделі, стимулюючи інновації в архітектурі моделі та навчання майбутніх потужних моде...
Великі мовні моделі (ВММ) передбачають слова в послідовності, виконуючи такі завдання, як узагальнення тексту та генерація коду. Галюцинації у результатах LLM можна мінімізувати за допомогою методів генерації пошукових доповнень (Retrieval Augment Generation, RAG), але оцінка достовірності має вирішальне значення.
На нещодавніх зборах керівники Google оголосили про плани покласти край ініціативам щодо різноманітності та відкликати обіцянку не використовувати штучний інтелект на озброєнні. Рішення компанії оновити навчальні програми та брати участь у геополітичних дискусіях викликало суперечки серед працівників.
З липня актори озвучення в SAG-AFTRA страйкують через використання штучного інтелекту у відеоіграх. У суперечці беруть участь такі великі видавці, як Activision Blizzard і Disney, що вплинуло на останні ігри, такі як Destiny 2 і Genshin Impact.
Розробники використовують Pydantic для безпечної роботи зі змінними середовища, зберігаючи їх у файлі .env та завантажуючи за допомогою python-dotenv. Цей метод гарантує, що конфіденційні дані залишаються приватними і спрощує налаштування проекту для інших розробників.
LLM революціонізують обробку природної мови, але стикаються з проблемами затримок. Фреймворк Medusa прискорює виведення LLM, передбачаючи кілька токенів одночасно, досягаючи прискорення в 2 рази без втрати якості.