Генеративні AI-рішення, такі як Amazon Bedrock, трансформують галузі, надаючи організаціям можливість використовувати базові моделі для інноваційних AI-додатків. FloQast, маючи понад 2800 клієнтів, оптимізує бухгалтерські операції за допомогою рішень на основі штучного інтелекту на Amazon Bedrock, вирішуючи складні завдання в масштабах.
Цього року Microsoft планує інвестувати $80 млрд у штучний інтелект, що перевищує очікування щодо доходів, які становили $70,07 млрд. Прибуток на акцію перевищив прогнози аналітиків і склав $3,46, що свідчить про фінансовий успіх ШІ.
Письменники-початківці тепер можуть вчитися у «Агати Крісті» за допомогою онлайн-відеоуроків від BBC Maestro. Відеоролики використовують технологію штучного інтелекту та відреставровані аудіозаписи, повертаючи культового автора до життя.
Універсальна теорема про апроксимацію розкриває можливості нейронної мережі з одним прихованим шаром. Hugging Face демонструє понад мільйон попередньо навчених моделей, підкреслюючи потребу в різноманітних мережевих архітектурах.
Генеративний ШІ трансформує галузі, але занепокоєння щодо відповідального використання зростає. Для зменшення ризиків і забезпечення безпечної розробки ШІ вкрай важливим є об'єднання зусиль для створення червоних команд.
Представляємо AutoPatchBench - еталонний інструмент для усунення вразливостей за допомогою штучного інтелекту, що покращує рішення для захисту та сприяє співпраці. Автоматизація усунення вразливостей за допомогою штучного інтелекту скорочує час і зусилля, ефективно захищаючи цифрове середовище.
Агентний ШІ ставить перед розробниками нові виклики у забезпеченні відповідності людським намірам та суспільним нормам. Ці вдосконалені системи можуть розробляти і реалізовувати довгострокові таємні стратегії, що вимагає нових підходів до безпеки та узгодження.
Прогнозування зв'язків - популярна тема в соціальних мережах, електронній комерції та біології. Методи варіюються від простих евристик до просунутих моделей на основі GNN, таких як SEAL.
Від інженера з контролю якості до експерта з аналітики даних, який самоучка, мандрує розмитими межами ролей даних у світі технологій, що швидко розвивається. Вивчення реальних відмінностей між ролями даних на прикладі вигаданого стартапу швидкої комерції Quikee та його потреб у даних.
Засновник LogiGreen розповідає про використання штучного інтелекту для покращення аналізу ланцюгів поставок з метою сталого розвитку та подолання викликів, з якими стикаються компанії. Агентний ШІ допомагає поліпшити звітність і прискорити реалізацію ініціатив зі сталого розвитку.
Маючи справу з різноманітною лексикою в машинному навчанні, ядро Гауса вимірює схожість векторів. Неузгодженість у позначеннях створює проблему для розуміння функцій ядра в дослідженнях і застосуваннях.
LLM-агенти захоплюють світ технологій, але аналітичний ШІ залишається важливим для забезпечення кількісного обґрунтування. Інтеграція обох технологій створює безпрецедентні можливості для розвитку можливостей ШІ.
Створення надійної системи транскрипції довгих аудіоінтерв'ю французькою мовою за допомогою ШІ Vertex від Google зіткнулося з несподіваними труднощами. Незважаючи на обмеження моделі, команда провела оцінку бюджету та подолала катастрофічні зсуви часових міток, щоб створити масштабоване рішення.
Моделі Amazon Nova пропонують найсучасніший інтелект та економічну ефективність на Amazon Bedrock. Перехід на ці моделі вимагає швидкої оптимізації та ретельної оцінки для забезпечення стабільності та покращення продуктивності.
Щоб стати інженером машинного навчання, потрібні навички в галузі статистики, математики, машинного навчання, програмної інженерії тощо. Перехід від науковця з даних або інженера-програміста - поширений шлях до високооплачуваних ролей у галузі машинного навчання.